利用希腊酸奶溶液制备环保型 CoFe2O4 铁氧体纳米粒子:深入了解光电和催化应用的光学特性和异常半导体-绝缘体-半导体转变†。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Heba Hussein, S. S. Ibrahim and Sherif A. Khairy
{"title":"利用希腊酸奶溶液制备环保型 CoFe2O4 铁氧体纳米粒子:深入了解光电和催化应用的光学特性和异常半导体-绝缘体-半导体转变†。","authors":"Heba Hussein, S. S. Ibrahim and Sherif A. Khairy","doi":"10.1039/D4MA01172D","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a green and cost-effective synthesis method for CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles using Greek yogurt, showcasing significant advancements in surface and interface science. The nanoparticles, characterized by a spinel structure with direct and indirect band gaps of 1.46 eV and 0.9 eV, respectively, demonstrate exceptional structural, optical, dielectric, and catalytic properties. Dielectric analysis reveals strong frequency- and temperature-dependent behaviour, with high dielectric constants at low frequencies and conduction mechanisms dominated by polaron hopping and defect states. Using the Havriliak–Negami model, the study highlights temperature-dependent relaxation times and dielectric constants, further elucidating the nanoscale interfacial dynamics governing these phenomena. The nanoparticles achieved a remarkable 97% degradation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> in just 150 minutes at room temperature, following first-order kinetics with a rate constant of 3.39 × 10<small><sup>−4</sup></small> s<small><sup>−1</sup></small>. The superior performance is attributed to their high surface area (269.67 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) and small crystallite size (14.78 nm), which optimize their surface and interface properties. By integrating green synthesis methods with advanced insights into interfacial processes, this work bridges the critical link between nanoscale structural features and functional outcomes, establishing CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles as ideal candidates for environmentally sustainable optoelectronic and catalytic technologies. This research redefines the intersection of green chemistry and material science, emphasizing the transformative potential of tailoring nanoscale interfaces to drive next-generation sustainable technologies. The findings expand the fundamental understanding of material interfaces and highlight practical pathways for optimizing stability and efficiency in real-world applications, paving the way for breakthroughs in optoelectronics and catalysis.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2297-2327"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01172d?page=search","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly CoFe2O4 ferrite nanoparticles prepared using greek yogurt solution: deep insights into optical properties and abnormal semiconductor–insulator–semiconductor transitions for optoelectronics and catalytic applications†\",\"authors\":\"Heba Hussein, S. S. Ibrahim and Sherif A. Khairy\",\"doi\":\"10.1039/D4MA01172D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces a green and cost-effective synthesis method for CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles using Greek yogurt, showcasing significant advancements in surface and interface science. The nanoparticles, characterized by a spinel structure with direct and indirect band gaps of 1.46 eV and 0.9 eV, respectively, demonstrate exceptional structural, optical, dielectric, and catalytic properties. Dielectric analysis reveals strong frequency- and temperature-dependent behaviour, with high dielectric constants at low frequencies and conduction mechanisms dominated by polaron hopping and defect states. Using the Havriliak–Negami model, the study highlights temperature-dependent relaxation times and dielectric constants, further elucidating the nanoscale interfacial dynamics governing these phenomena. The nanoparticles achieved a remarkable 97% degradation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> in just 150 minutes at room temperature, following first-order kinetics with a rate constant of 3.39 × 10<small><sup>−4</sup></small> s<small><sup>−1</sup></small>. The superior performance is attributed to their high surface area (269.67 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) and small crystallite size (14.78 nm), which optimize their surface and interface properties. By integrating green synthesis methods with advanced insights into interfacial processes, this work bridges the critical link between nanoscale structural features and functional outcomes, establishing CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles as ideal candidates for environmentally sustainable optoelectronic and catalytic technologies. This research redefines the intersection of green chemistry and material science, emphasizing the transformative potential of tailoring nanoscale interfaces to drive next-generation sustainable technologies. The findings expand the fundamental understanding of material interfaces and highlight practical pathways for optimizing stability and efficiency in real-world applications, paving the way for breakthroughs in optoelectronics and catalysis.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 7\",\"pages\":\" 2297-2327\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01172d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01172d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01172d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种绿色、经济的利用希腊酸奶合成CoFe2O4纳米颗粒的方法,展示了表面和界面科学的重大进展。该纳米颗粒具有尖晶石结构,其直接带隙和间接带隙分别为1.46 eV和0.9 eV,具有优异的结构、光学、介电和催化性能。电介质分析揭示了强的频率和温度依赖行为,在低频具有高介电常数和极化子跳变和缺陷态主导的传导机制。利用Havriliak-Negami模型,该研究强调了温度依赖的弛豫时间和介电常数,进一步阐明了控制这些现象的纳米级界面动力学。在室温条件下,纳米颗粒在150分钟内对H2O2的降解率达到了97%,其一级动力学速率常数为3.39 × 10−4 s−1。高表面积(269.67 m2 g−1)和小晶粒尺寸(14.78 nm)优化了它们的表面和界面性能。通过整合绿色合成方法和对界面过程的先进见解,本研究在纳米级结构特征和功能结果之间架起了关键的桥梁,建立了CoFe2O4纳米颗粒作为环境可持续光电和催化技术的理想候选者。这项研究重新定义了绿色化学和材料科学的交叉点,强调了定制纳米级界面的变革潜力,以推动下一代可持续技术。这些发现扩展了对材料界面的基本理解,并强调了在现实应用中优化稳定性和效率的实际途径,为光电子学和催化的突破铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Eco-friendly CoFe2O4 ferrite nanoparticles prepared using greek yogurt solution: deep insights into optical properties and abnormal semiconductor–insulator–semiconductor transitions for optoelectronics and catalytic applications†

Eco-friendly CoFe2O4 ferrite nanoparticles prepared using greek yogurt solution: deep insights into optical properties and abnormal semiconductor–insulator–semiconductor transitions for optoelectronics and catalytic applications†

This study introduces a green and cost-effective synthesis method for CoFe2O4 nanoparticles using Greek yogurt, showcasing significant advancements in surface and interface science. The nanoparticles, characterized by a spinel structure with direct and indirect band gaps of 1.46 eV and 0.9 eV, respectively, demonstrate exceptional structural, optical, dielectric, and catalytic properties. Dielectric analysis reveals strong frequency- and temperature-dependent behaviour, with high dielectric constants at low frequencies and conduction mechanisms dominated by polaron hopping and defect states. Using the Havriliak–Negami model, the study highlights temperature-dependent relaxation times and dielectric constants, further elucidating the nanoscale interfacial dynamics governing these phenomena. The nanoparticles achieved a remarkable 97% degradation of H2O2 in just 150 minutes at room temperature, following first-order kinetics with a rate constant of 3.39 × 10−4 s−1. The superior performance is attributed to their high surface area (269.67 m2 g−1) and small crystallite size (14.78 nm), which optimize their surface and interface properties. By integrating green synthesis methods with advanced insights into interfacial processes, this work bridges the critical link between nanoscale structural features and functional outcomes, establishing CoFe2O4 nanoparticles as ideal candidates for environmentally sustainable optoelectronic and catalytic technologies. This research redefines the intersection of green chemistry and material science, emphasizing the transformative potential of tailoring nanoscale interfaces to drive next-generation sustainable technologies. The findings expand the fundamental understanding of material interfaces and highlight practical pathways for optimizing stability and efficiency in real-world applications, paving the way for breakthroughs in optoelectronics and catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信