用于激光消融的微创温度测绘:体外肝脏初步研究

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Aurora Bellone;Massimo Olivero;Gianni Coppa;Alberto Vallan;Guido Perrone
{"title":"用于激光消融的微创温度测绘:体外肝脏初步研究","authors":"Aurora Bellone;Massimo Olivero;Gianni Coppa;Alberto Vallan;Guido Perrone","doi":"10.1109/TIM.2025.3551467","DOIUrl":null,"url":null,"abstract":"The optimization of laser ablation (LA) surgical procedures—specifically for the treatment of tumors—requires evaluating the temperature distribution across the entire area under treatment (e.g., the tumor volume). However, minimally invasive temperature sensors can only provide information in a limited number of points. Therefore, an effective prediction algorithm is required to reconstruct the temperature map for the entire heat affected tissue from as few temperature measurements as possible. This work presents an approach for predicting the temperature around the laser delivery fiber, based on the thermal Green’s function, where patient-specific tissue thermal parameters are obtained through a fitting procedure using measurement of the temperature evolution at known locations. The proposed method is independent of the specific temperature sensor used; in the experiments reported, the temperature was measured both at the prediction points and at validation points using a quasi-distributed sensor composed of dense fiber Bragg grating (FBG) arrays, written with a femtosecond laser. A preliminary validation under ideal conditions, represented by ex vivo cases, has been performed through a series of experiments on bovine liver samples. The obtained results demonstrate that it is possible to predict the temperature distribution across the entire ablated area, with errors well below the commonly accepted uncertainty for treatments of this type.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-10"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimally Invasive Temperature Mapping for Laser Ablation: A Preliminary Study on Ex Vivo Livers\",\"authors\":\"Aurora Bellone;Massimo Olivero;Gianni Coppa;Alberto Vallan;Guido Perrone\",\"doi\":\"10.1109/TIM.2025.3551467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of laser ablation (LA) surgical procedures—specifically for the treatment of tumors—requires evaluating the temperature distribution across the entire area under treatment (e.g., the tumor volume). However, minimally invasive temperature sensors can only provide information in a limited number of points. Therefore, an effective prediction algorithm is required to reconstruct the temperature map for the entire heat affected tissue from as few temperature measurements as possible. This work presents an approach for predicting the temperature around the laser delivery fiber, based on the thermal Green’s function, where patient-specific tissue thermal parameters are obtained through a fitting procedure using measurement of the temperature evolution at known locations. The proposed method is independent of the specific temperature sensor used; in the experiments reported, the temperature was measured both at the prediction points and at validation points using a quasi-distributed sensor composed of dense fiber Bragg grating (FBG) arrays, written with a femtosecond laser. A preliminary validation under ideal conditions, represented by ex vivo cases, has been performed through a series of experiments on bovine liver samples. The obtained results demonstrate that it is possible to predict the temperature distribution across the entire ablated area, with errors well below the commonly accepted uncertainty for treatments of this type.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"74 \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10932818/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10932818/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimally Invasive Temperature Mapping for Laser Ablation: A Preliminary Study on Ex Vivo Livers
The optimization of laser ablation (LA) surgical procedures—specifically for the treatment of tumors—requires evaluating the temperature distribution across the entire area under treatment (e.g., the tumor volume). However, minimally invasive temperature sensors can only provide information in a limited number of points. Therefore, an effective prediction algorithm is required to reconstruct the temperature map for the entire heat affected tissue from as few temperature measurements as possible. This work presents an approach for predicting the temperature around the laser delivery fiber, based on the thermal Green’s function, where patient-specific tissue thermal parameters are obtained through a fitting procedure using measurement of the temperature evolution at known locations. The proposed method is independent of the specific temperature sensor used; in the experiments reported, the temperature was measured both at the prediction points and at validation points using a quasi-distributed sensor composed of dense fiber Bragg grating (FBG) arrays, written with a femtosecond laser. A preliminary validation under ideal conditions, represented by ex vivo cases, has been performed through a series of experiments on bovine liver samples. The obtained results demonstrate that it is possible to predict the temperature distribution across the entire ablated area, with errors well below the commonly accepted uncertainty for treatments of this type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信