基于无参比RO累积阈值的1.46 pj /bit、149 kf²RO TRNG

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Haibiao Zuo;Qingsen Zhuang;Jiacheng Hao;Haochen Zhong;Xiaojin Zhao
{"title":"基于无参比RO累积阈值的1.46 pj /bit、149 kf²RO TRNG","authors":"Haibiao Zuo;Qingsen Zhuang;Jiacheng Hao;Haochen Zhong;Xiaojin Zhao","doi":"10.1109/TCSII.2025.3543628","DOIUrl":null,"url":null,"abstract":"In this brief, a ring-oscillator-based true random number generator (RO-TRNG) is presented with an energy-efficient on-chip module for temporal thresholding of the accumulated jitter noise. The need of power-hungry reference ring oscillator (RO) for frequency collapse detection in previous implementation can be completely removed. In addition, by setting the RO-TRNG’s enable signal adaptively according to the output of the proposed jitter accumulation thresholding (JAT) module, the redundant oscillations in most cycles of the prior art can be fully eliminated, leading to significant energy saving per each TRNG bit. Based on a 65-nm 1.2 V standard CMOS process, the fabricated TRNG chips feature an ultra-compact silicon area of 149 K<inline-formula> <tex-math>$F^{2}$ </tex-math></inline-formula>. Meanwhile, a high energy efficiency of 1.46 pJ/bit is achieved for the prototype chips operated under a supply voltage of 1.0 V and an overall throughput of 44.7 Mbps. High randomness of the fabricated TRNG chips is well validated by using both National Institute of Standards and Technology (NIST) and autocorrelation function (ACF) test tools. Moreover, high Shannon entropy values over 0.999998 are observed for the TRNG chips operated under an industrial temperature range of −40°C~125°C and a supply voltage range of 1.0 V~1.4 V, showing excellent tolerance to the process-voltage-temperature (PVT) variations.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 4","pages":"618-622"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 1.46-pJ/bit, 149-KF² RO TRNG Based on Reference-RO-Free Thresholding of Jitter Accumulation\",\"authors\":\"Haibiao Zuo;Qingsen Zhuang;Jiacheng Hao;Haochen Zhong;Xiaojin Zhao\",\"doi\":\"10.1109/TCSII.2025.3543628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, a ring-oscillator-based true random number generator (RO-TRNG) is presented with an energy-efficient on-chip module for temporal thresholding of the accumulated jitter noise. The need of power-hungry reference ring oscillator (RO) for frequency collapse detection in previous implementation can be completely removed. In addition, by setting the RO-TRNG’s enable signal adaptively according to the output of the proposed jitter accumulation thresholding (JAT) module, the redundant oscillations in most cycles of the prior art can be fully eliminated, leading to significant energy saving per each TRNG bit. Based on a 65-nm 1.2 V standard CMOS process, the fabricated TRNG chips feature an ultra-compact silicon area of 149 K<inline-formula> <tex-math>$F^{2}$ </tex-math></inline-formula>. Meanwhile, a high energy efficiency of 1.46 pJ/bit is achieved for the prototype chips operated under a supply voltage of 1.0 V and an overall throughput of 44.7 Mbps. High randomness of the fabricated TRNG chips is well validated by using both National Institute of Standards and Technology (NIST) and autocorrelation function (ACF) test tools. Moreover, high Shannon entropy values over 0.999998 are observed for the TRNG chips operated under an industrial temperature range of −40°C~125°C and a supply voltage range of 1.0 V~1.4 V, showing excellent tolerance to the process-voltage-temperature (PVT) variations.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 4\",\"pages\":\"618-622\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10892238/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10892238/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于环形振荡器的真随机数发生器(RO-TRNG),该发生器具有高效的片上模块,用于累积抖动噪声的时间阈值处理。在以前的实现中,需要耗电的参考环振荡器(RO)进行频率崩溃检测,可以完全消除。此外,通过根据所提出的JAT模块的输出自适应地设置RO-TRNG的使能信号,可以完全消除现有技术中大多数周期中的冗余振荡,从而实现每个TRNG比特的显著节能。基于65纳米1.2 V标准CMOS工艺,制造的TRNG芯片具有超紧凑的硅面积为149 K $F^{2}$。同时,原型芯片在1.0 V的电源电压下实现了1.46 pJ/bit的高能效,总吞吐量为44.7 Mbps。采用美国国家标准与技术研究院(NIST)和自相关函数(ACF)测试工具验证了所制TRNG芯片的高随机性。此外,在- 40°C~125°C的工业温度范围和1.0 V~1.4 V的电源电压范围下,TRNG芯片的Shannon熵值超过0.999998,表现出对工艺电压温度(PVT)变化的良好耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.46-pJ/bit, 149-KF² RO TRNG Based on Reference-RO-Free Thresholding of Jitter Accumulation
In this brief, a ring-oscillator-based true random number generator (RO-TRNG) is presented with an energy-efficient on-chip module for temporal thresholding of the accumulated jitter noise. The need of power-hungry reference ring oscillator (RO) for frequency collapse detection in previous implementation can be completely removed. In addition, by setting the RO-TRNG’s enable signal adaptively according to the output of the proposed jitter accumulation thresholding (JAT) module, the redundant oscillations in most cycles of the prior art can be fully eliminated, leading to significant energy saving per each TRNG bit. Based on a 65-nm 1.2 V standard CMOS process, the fabricated TRNG chips feature an ultra-compact silicon area of 149 K $F^{2}$ . Meanwhile, a high energy efficiency of 1.46 pJ/bit is achieved for the prototype chips operated under a supply voltage of 1.0 V and an overall throughput of 44.7 Mbps. High randomness of the fabricated TRNG chips is well validated by using both National Institute of Standards and Technology (NIST) and autocorrelation function (ACF) test tools. Moreover, high Shannon entropy values over 0.999998 are observed for the TRNG chips operated under an industrial temperature range of −40°C~125°C and a supply voltage range of 1.0 V~1.4 V, showing excellent tolerance to the process-voltage-temperature (PVT) variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信