Nisha Rajbhar , Devansh Singhal , Harsh P. Nijhawan , Piyush Verma , Govind Soni , Khushwant S. Yadav
{"title":"作为一种新型眼部给药系统:评估材料属性、工艺参数和质量属性","authors":"Nisha Rajbhar , Devansh Singhal , Harsh P. Nijhawan , Piyush Verma , Govind Soni , Khushwant S. Yadav","doi":"10.1016/j.exer.2025.110364","DOIUrl":null,"url":null,"abstract":"<div><div>Bilosomes are lipidic or surfactant-based nanovesicles with bile salts as key constituents and have emerged as promising carriers for diverse administration routes, including topical, oral, transdermal, and ophthalmic applications. In ocular drug delivery, bilosomes have provided some unique advantages over traditional nano-vesicular systems, which include improved permeation, prolonged retention, enhanced stability, and high deformability, resulting in better drug availability for therapeutic action. This review focuses on the quality attributes and process parameters that govern the design and functionality of bilosomes for ocular drug delivery. By addressing critical material attributes and certain formulation techniques, we provide insights into how these factors influence the stability, permeability, and therapeutic efficacy of bilosome-based systems. Advancements in bilosome formulations for treating ocular disorders, such as glaucoma, bacterial conjunctivitis, and keratitis, are highlighted. Additionally, the potential of surface-modified bilosomes with targeting moieties to enhance drug delivery characteristics is discussed. This review aims to provide a comprehensive overview of bilosome-based approaches, including decorated bilosomes, as a novel strategy for addressing challenges in ocular drug delivery.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"255 ","pages":"Article 110364"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilosomes as a novel ocular drug delivery system: Assessing the material attributes, process parameters, and quality attributes\",\"authors\":\"Nisha Rajbhar , Devansh Singhal , Harsh P. Nijhawan , Piyush Verma , Govind Soni , Khushwant S. Yadav\",\"doi\":\"10.1016/j.exer.2025.110364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bilosomes are lipidic or surfactant-based nanovesicles with bile salts as key constituents and have emerged as promising carriers for diverse administration routes, including topical, oral, transdermal, and ophthalmic applications. In ocular drug delivery, bilosomes have provided some unique advantages over traditional nano-vesicular systems, which include improved permeation, prolonged retention, enhanced stability, and high deformability, resulting in better drug availability for therapeutic action. This review focuses on the quality attributes and process parameters that govern the design and functionality of bilosomes for ocular drug delivery. By addressing critical material attributes and certain formulation techniques, we provide insights into how these factors influence the stability, permeability, and therapeutic efficacy of bilosome-based systems. Advancements in bilosome formulations for treating ocular disorders, such as glaucoma, bacterial conjunctivitis, and keratitis, are highlighted. Additionally, the potential of surface-modified bilosomes with targeting moieties to enhance drug delivery characteristics is discussed. This review aims to provide a comprehensive overview of bilosome-based approaches, including decorated bilosomes, as a novel strategy for addressing challenges in ocular drug delivery.</div></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"255 \",\"pages\":\"Article 110364\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483525001356\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525001356","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Bilosomes as a novel ocular drug delivery system: Assessing the material attributes, process parameters, and quality attributes
Bilosomes are lipidic or surfactant-based nanovesicles with bile salts as key constituents and have emerged as promising carriers for diverse administration routes, including topical, oral, transdermal, and ophthalmic applications. In ocular drug delivery, bilosomes have provided some unique advantages over traditional nano-vesicular systems, which include improved permeation, prolonged retention, enhanced stability, and high deformability, resulting in better drug availability for therapeutic action. This review focuses on the quality attributes and process parameters that govern the design and functionality of bilosomes for ocular drug delivery. By addressing critical material attributes and certain formulation techniques, we provide insights into how these factors influence the stability, permeability, and therapeutic efficacy of bilosome-based systems. Advancements in bilosome formulations for treating ocular disorders, such as glaucoma, bacterial conjunctivitis, and keratitis, are highlighted. Additionally, the potential of surface-modified bilosomes with targeting moieties to enhance drug delivery characteristics is discussed. This review aims to provide a comprehensive overview of bilosome-based approaches, including decorated bilosomes, as a novel strategy for addressing challenges in ocular drug delivery.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.