野外网箱对桃叶上4种生物农药的死亡率及摄食行为研究

IF 2.5 2区 农林科学 Q1 AGRONOMY
Anita S. Neal, Pasco B. Avery, Ronald D. Cave
{"title":"野外网箱对桃叶上4种生物农药的死亡率及摄食行为研究","authors":"Anita S. Neal,&nbsp;Pasco B. Avery,&nbsp;Ronald D. Cave","doi":"10.1016/j.cropro.2025.107218","DOIUrl":null,"url":null,"abstract":"<div><div>Mortality and feeding damage of <em>Myllocerus undecimpustulatus undatus</em> Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages were assessed at two sites in Florida. Two branches (one for caging weevils and one with no cage) with 6–8 leaves without evidence of herbivory were tagged on each of 25 trees at each site. Before treatment applications, one leaf was collected from each uncaged branch for a baseline assessment of endemic entomopathogenic fungal propagules and spray drift. Treatments were three entomopathogenic fungus-based formulations (BotaniGard®ES, PFR-97™ 20 % WDG, and Met52® EC), one azadirachtin formulation (AzaMax™), and distilled water as a control. Branches tagged for caging were sprayed with either one of the three fungal biopesticide treatments at a concentration of 10<sup>7</sup> propagules per ml, an azadirachtin formulation, or distilled water until runoff and then allowed to air dry. One leaf was randomly selected from each sprayed branch for propagule deposition assessment. Five adult <em>M. undecimpustulatus undatus</em> were placed in each cage (five cages per treatment) and left for 15 days after which survivorship and herbivory were assessed across three trials at each site (15 total replicates per treatment per site). All biopesticide treatments resulted in higher weevil mortality compared to the water control. BotaniGard caused approximately four times higher mortality than the other fungal treatments and 78 % mycosis. Mean damage rating index values were highest in the control treatment, followed by BotaniGard ≥ PFR-97 ≥ Met52 = AzaMax. The high mortality rates caused by BotaniGard and reduced feeding caused by AzaMaz suggest that adult <em>M. undecimpustulatus undatus</em> populations might be managed in the field by combining these two biopesticides.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"194 ","pages":"Article 107218"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mortality rates and feeding behavior of adult Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages\",\"authors\":\"Anita S. Neal,&nbsp;Pasco B. Avery,&nbsp;Ronald D. Cave\",\"doi\":\"10.1016/j.cropro.2025.107218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mortality and feeding damage of <em>Myllocerus undecimpustulatus undatus</em> Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages were assessed at two sites in Florida. Two branches (one for caging weevils and one with no cage) with 6–8 leaves without evidence of herbivory were tagged on each of 25 trees at each site. Before treatment applications, one leaf was collected from each uncaged branch for a baseline assessment of endemic entomopathogenic fungal propagules and spray drift. Treatments were three entomopathogenic fungus-based formulations (BotaniGard®ES, PFR-97™ 20 % WDG, and Met52® EC), one azadirachtin formulation (AzaMax™), and distilled water as a control. Branches tagged for caging were sprayed with either one of the three fungal biopesticide treatments at a concentration of 10<sup>7</sup> propagules per ml, an azadirachtin formulation, or distilled water until runoff and then allowed to air dry. One leaf was randomly selected from each sprayed branch for propagule deposition assessment. Five adult <em>M. undecimpustulatus undatus</em> were placed in each cage (five cages per treatment) and left for 15 days after which survivorship and herbivory were assessed across three trials at each site (15 total replicates per treatment per site). All biopesticide treatments resulted in higher weevil mortality compared to the water control. BotaniGard caused approximately four times higher mortality than the other fungal treatments and 78 % mycosis. Mean damage rating index values were highest in the control treatment, followed by BotaniGard ≥ PFR-97 ≥ Met52 = AzaMax. The high mortality rates caused by BotaniGard and reduced feeding caused by AzaMaz suggest that adult <em>M. undecimpustulatus undatus</em> populations might be managed in the field by combining these two biopesticides.</div></div>\",\"PeriodicalId\":10785,\"journal\":{\"name\":\"Crop Protection\",\"volume\":\"194 \",\"pages\":\"Article 107218\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0261219425001103\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219425001103","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

在美国佛罗里达州的2个地点,采用田间网箱对4种生物农药对桃叶的影响进行了死亡率和取食危害评价。在每个地点的25棵树上,每棵树上都标记了两根没有食草证据的6-8片叶子的树枝(一根笼子里的象鼻虫,另一根没有笼子)。在施用处理之前,从每个未封闭的树枝上收集一片叶子,用于地方性昆虫病原真菌繁殖体和喷雾漂移的基线评估。处理为三种昆虫病原真菌制剂(BotaniGard®ES, PFR-97™20% WDG和Met52®EC),一种印楝素制剂(AzaMax™),蒸馏水作为对照。标记为笼子的树枝喷洒三种真菌生物农药处理中的一种,浓度为每毫升107繁殖体,一种印楝素制剂,或蒸馏水,直到径流,然后让风干。每个喷施枝条随机选取1片叶片进行繁殖体沉积评价。将5只成虫置于每个笼子中(每个处理5个笼子),放置15天,之后在每个地点进行3个试验(每个处理每个地点总共15个重复),评估成虫存活率和食草性。与水处理相比,所有生物农药处理导致象鼻虫死亡率更高。与其他真菌治疗相比,BotaniGard造成的死亡率大约高出4倍,霉菌病发生率为78%。对照处理的平均危害等级指数最高,其次为BotaniGard≥PFR-97≥Met52 = AzaMax。BotaniGard造成的高死亡率和AzaMaz造成的取食减少表明,这两种生物农药可以联合在田间管理未刺突胸蚜成虫种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mortality rates and feeding behavior of adult Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages

Mortality rates and feeding behavior of adult Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages
Mortality and feeding damage of Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) exposed to four biopesticides on peach foliage in field cages were assessed at two sites in Florida. Two branches (one for caging weevils and one with no cage) with 6–8 leaves without evidence of herbivory were tagged on each of 25 trees at each site. Before treatment applications, one leaf was collected from each uncaged branch for a baseline assessment of endemic entomopathogenic fungal propagules and spray drift. Treatments were three entomopathogenic fungus-based formulations (BotaniGard®ES, PFR-97™ 20 % WDG, and Met52® EC), one azadirachtin formulation (AzaMax™), and distilled water as a control. Branches tagged for caging were sprayed with either one of the three fungal biopesticide treatments at a concentration of 107 propagules per ml, an azadirachtin formulation, or distilled water until runoff and then allowed to air dry. One leaf was randomly selected from each sprayed branch for propagule deposition assessment. Five adult M. undecimpustulatus undatus were placed in each cage (five cages per treatment) and left for 15 days after which survivorship and herbivory were assessed across three trials at each site (15 total replicates per treatment per site). All biopesticide treatments resulted in higher weevil mortality compared to the water control. BotaniGard caused approximately four times higher mortality than the other fungal treatments and 78 % mycosis. Mean damage rating index values were highest in the control treatment, followed by BotaniGard ≥ PFR-97 ≥ Met52 = AzaMax. The high mortality rates caused by BotaniGard and reduced feeding caused by AzaMaz suggest that adult M. undecimpustulatus undatus populations might be managed in the field by combining these two biopesticides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crop Protection
Crop Protection 农林科学-农艺学
CiteScore
6.10
自引率
3.60%
发文量
200
审稿时长
29 days
期刊介绍: The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics: -Abiotic damage- Agronomic control methods- Assessment of pest and disease damage- Molecular methods for the detection and assessment of pests and diseases- Biological control- Biorational pesticides- Control of animal pests of world crops- Control of diseases of crop plants caused by microorganisms- Control of weeds and integrated management- Economic considerations- Effects of plant growth regulators- Environmental benefits of reduced pesticide use- Environmental effects of pesticides- Epidemiology of pests and diseases in relation to control- GM Crops, and genetic engineering applications- Importance and control of postharvest crop losses- Integrated control- Interrelationships and compatibility among different control strategies- Invasive species as they relate to implications for crop protection- Pesticide application methods- Pest management- Phytobiomes for pest and disease control- Resistance management- Sampling and monitoring schemes for diseases, nematodes, pests and weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信