指数型整体函数的离散化定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Michael I. Ganzburg
{"title":"指数型整体函数的离散化定理","authors":"Michael I. Ganzburg","doi":"10.1016/j.jmaa.2025.129510","DOIUrl":null,"url":null,"abstract":"<div><div>We prove <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>–discretization inequalities for entire functions <em>f</em> of exponential type in the form<span><span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msup><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo><mo>,</mo></mrow></math></span></span></span> with estimates for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We find a necessary and sufficient condition on <span><math><mi>Ω</mi><mo>=</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for the right inequality to be valid and a sufficient condition on Ω for the left one to hold true. In addition, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></math></span>-discretization inequalities on an <em>m</em>-dimensional cube are proved for entire functions of exponential type and exponential polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129510"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discretization theorems for entire functions of exponential type\",\"authors\":\"Michael I. Ganzburg\",\"doi\":\"10.1016/j.jmaa.2025.129510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>–discretization inequalities for entire functions <em>f</em> of exponential type in the form<span><span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msup><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo><mo>,</mo></mrow></math></span></span></span> with estimates for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We find a necessary and sufficient condition on <span><math><mi>Ω</mi><mo>=</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for the right inequality to be valid and a sufficient condition on Ω for the left one to hold true. In addition, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></math></span>-discretization inequalities on an <em>m</em>-dimensional cube are proved for entire functions of exponential type and exponential polynomials.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129510\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002914\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了指数型完整函数f在C2‖f‖Lq(Rm)≤(∑ν=1∞|f(Xν)|q)1/q≤C1‖f‖Lq(Rm),q∈[1,∞]的形式下的Lq(Rm) -离散化不等式,并给出了C1和C2的估计。我们在Ω={Xν}ν=1∞∧Rm上找到右不等式成立的充分必要条件,在Ω上找到左不等式成立的充分必要条件。此外,证明了m维立方体上的L∞(Qbm)-离散化不等式对于指数型和指数多项式的整个函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discretization theorems for entire functions of exponential type
We prove Lq(Rm)–discretization inequalities for entire functions f of exponential type in the formC2fLq(Rm)(ν=1|f(Xν)|q)1/qC1fLq(Rm),q[1,], with estimates for C1 and C2. We find a necessary and sufficient condition on Ω={Xν}ν=1Rm for the right inequality to be valid and a sufficient condition on Ω for the left one to hold true. In addition, L(Qbm)-discretization inequalities on an m-dimensional cube are proved for entire functions of exponential type and exponential polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信