{"title":"蛋白磷酸酶4抑制蛋白的缺失导致基因组不稳定,增加了对复制应激的易感性","authors":"Jaehong Park , Dong-Hyun Lee","doi":"10.1016/j.bbagen.2025.130797","DOIUrl":null,"url":null,"abstract":"<div><div>Protein phosphatase 4 inhibitory protein (PP4IP) has recently emerged as a key player in cellular processes, particularly in DNA double-strand break repair and telomere maintenance, although research on its functions remains limited. To further investigate the cellular pathways involving PP4IP, we conducted transcriptomic analysis via RNA sequencing in PP4IP-knockout cells and observed an upregulation of p21 expression. This upregulation was linked to an increased population of p21-positive G1-phase cells in the absence of PP4IP. Prior studies have suggested that unresolved under-replicated DNA in mother cells, transmitted to daughter cells, can trigger a quiescent G1 phase characterized by p21 expression and the formation of p53-binding protein 1 (53BP1) nuclear bodies. Consistent with this, we found a higher proportion of 53BP1 nuclear bodies-positive G1 cells in PP4IP-knockout cells compared to controls. Additionally, PP4IP-deficient cells displayed an increased occurrence of anaphase bridges—indicative of incomplete DNA replication—without a corresponding increase in lagging chromosomes. Furthermore, PP4IP-knockout cells exhibited a heightened susceptibility to replication stress, as evidenced by an elevated frequency of replication stress-induced chromatid breaks and increased sensitivity to such stress. Collectively, these results suggest that PP4IP plays a critical role in safeguarding cells from replication stress and ensuring genomic stability.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 6","pages":"Article 130797"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loss of protein phosphatase 4 inhibitory protein leads to genomic instability and heightens vulnerability to replication stress\",\"authors\":\"Jaehong Park , Dong-Hyun Lee\",\"doi\":\"10.1016/j.bbagen.2025.130797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Protein phosphatase 4 inhibitory protein (PP4IP) has recently emerged as a key player in cellular processes, particularly in DNA double-strand break repair and telomere maintenance, although research on its functions remains limited. To further investigate the cellular pathways involving PP4IP, we conducted transcriptomic analysis via RNA sequencing in PP4IP-knockout cells and observed an upregulation of p21 expression. This upregulation was linked to an increased population of p21-positive G1-phase cells in the absence of PP4IP. Prior studies have suggested that unresolved under-replicated DNA in mother cells, transmitted to daughter cells, can trigger a quiescent G1 phase characterized by p21 expression and the formation of p53-binding protein 1 (53BP1) nuclear bodies. Consistent with this, we found a higher proportion of 53BP1 nuclear bodies-positive G1 cells in PP4IP-knockout cells compared to controls. Additionally, PP4IP-deficient cells displayed an increased occurrence of anaphase bridges—indicative of incomplete DNA replication—without a corresponding increase in lagging chromosomes. Furthermore, PP4IP-knockout cells exhibited a heightened susceptibility to replication stress, as evidenced by an elevated frequency of replication stress-induced chromatid breaks and increased sensitivity to such stress. Collectively, these results suggest that PP4IP plays a critical role in safeguarding cells from replication stress and ensuring genomic stability.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 6\",\"pages\":\"Article 130797\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441652500042X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441652500042X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Loss of protein phosphatase 4 inhibitory protein leads to genomic instability and heightens vulnerability to replication stress
Protein phosphatase 4 inhibitory protein (PP4IP) has recently emerged as a key player in cellular processes, particularly in DNA double-strand break repair and telomere maintenance, although research on its functions remains limited. To further investigate the cellular pathways involving PP4IP, we conducted transcriptomic analysis via RNA sequencing in PP4IP-knockout cells and observed an upregulation of p21 expression. This upregulation was linked to an increased population of p21-positive G1-phase cells in the absence of PP4IP. Prior studies have suggested that unresolved under-replicated DNA in mother cells, transmitted to daughter cells, can trigger a quiescent G1 phase characterized by p21 expression and the formation of p53-binding protein 1 (53BP1) nuclear bodies. Consistent with this, we found a higher proportion of 53BP1 nuclear bodies-positive G1 cells in PP4IP-knockout cells compared to controls. Additionally, PP4IP-deficient cells displayed an increased occurrence of anaphase bridges—indicative of incomplete DNA replication—without a corresponding increase in lagging chromosomes. Furthermore, PP4IP-knockout cells exhibited a heightened susceptibility to replication stress, as evidenced by an elevated frequency of replication stress-induced chromatid breaks and increased sensitivity to such stress. Collectively, these results suggest that PP4IP plays a critical role in safeguarding cells from replication stress and ensuring genomic stability.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.