{"title":"减少大型液氢储罐沸腾的局部冷却与大面积冷却的比较","authors":"Sindre Stenen Blakseth , Ailo Aasen , André Massing , Petter Nekså","doi":"10.1016/j.cryogenics.2025.104065","DOIUrl":null,"url":null,"abstract":"<div><div>Future use of liquid hydrogen (<figure><img></figure> ) as an effective energy carrier will require elimination or minimization of hydrogen boil-off that is not utilized by demands in the value chain. The present work promotes local area cooling (LAC) as a promising boil-off reduction technology. In contrast to the more conventional broad area cooling (BAC), LAC targets local, concentrated heat flows e.g. through tank support structures. This yields important practical benefits, especially for large-scale tanks, due to the order-of-magnitude reduction in the size of the cooling system. Such benefits include lower capital costs and simpler installation, maintenance and coolant management. LAC applied outside the outer tank wall is particularly attractive for tanks with evacuated insulation.</div><div>In a series of numerical studies, we use the finite element method to evaluate the thermal performance of LAC and BAC in the context of ship-borne <figure><img></figure> transport. The studies concern 40<!--> <!-->000 m<sup>3</sup>-capacity, skirt-supported tanks insulated using evacuated perlite or helium-filled polyurethane (HePUR) foam. For the perlite-insulated tank, LAC and BAC with liquid nitrogen coolant can reduce the daily boil-off rate from 0.04%/day to, respectively, 0.011%/day and 0.004%/day. The corresponding numbers for CO<sub>2</sub>-based refrigeration are 0.031%/day and 0.028%/day. For the HePUR-insulated tank, which has a higher baseline boil-off rate of 0.24%/day, reduced boil-off rates down to 0.17%/day and 0.04%/day are achievable using LAC and BAC, respectively. LAC and BAC both offer increased power efficiency in comparison to reliquefaction only.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"148 ","pages":"Article 104065"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local area cooling versus broad area cooling for boil-off reduction in large-scale liquid hydrogen storage tanks\",\"authors\":\"Sindre Stenen Blakseth , Ailo Aasen , André Massing , Petter Nekså\",\"doi\":\"10.1016/j.cryogenics.2025.104065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Future use of liquid hydrogen (<figure><img></figure> ) as an effective energy carrier will require elimination or minimization of hydrogen boil-off that is not utilized by demands in the value chain. The present work promotes local area cooling (LAC) as a promising boil-off reduction technology. In contrast to the more conventional broad area cooling (BAC), LAC targets local, concentrated heat flows e.g. through tank support structures. This yields important practical benefits, especially for large-scale tanks, due to the order-of-magnitude reduction in the size of the cooling system. Such benefits include lower capital costs and simpler installation, maintenance and coolant management. LAC applied outside the outer tank wall is particularly attractive for tanks with evacuated insulation.</div><div>In a series of numerical studies, we use the finite element method to evaluate the thermal performance of LAC and BAC in the context of ship-borne <figure><img></figure> transport. The studies concern 40<!--> <!-->000 m<sup>3</sup>-capacity, skirt-supported tanks insulated using evacuated perlite or helium-filled polyurethane (HePUR) foam. For the perlite-insulated tank, LAC and BAC with liquid nitrogen coolant can reduce the daily boil-off rate from 0.04%/day to, respectively, 0.011%/day and 0.004%/day. The corresponding numbers for CO<sub>2</sub>-based refrigeration are 0.031%/day and 0.028%/day. For the HePUR-insulated tank, which has a higher baseline boil-off rate of 0.24%/day, reduced boil-off rates down to 0.17%/day and 0.04%/day are achievable using LAC and BAC, respectively. LAC and BAC both offer increased power efficiency in comparison to reliquefaction only.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"148 \",\"pages\":\"Article 104065\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227525000438\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000438","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Local area cooling versus broad area cooling for boil-off reduction in large-scale liquid hydrogen storage tanks
Future use of liquid hydrogen ( ) as an effective energy carrier will require elimination or minimization of hydrogen boil-off that is not utilized by demands in the value chain. The present work promotes local area cooling (LAC) as a promising boil-off reduction technology. In contrast to the more conventional broad area cooling (BAC), LAC targets local, concentrated heat flows e.g. through tank support structures. This yields important practical benefits, especially for large-scale tanks, due to the order-of-magnitude reduction in the size of the cooling system. Such benefits include lower capital costs and simpler installation, maintenance and coolant management. LAC applied outside the outer tank wall is particularly attractive for tanks with evacuated insulation.
In a series of numerical studies, we use the finite element method to evaluate the thermal performance of LAC and BAC in the context of ship-borne transport. The studies concern 40 000 m3-capacity, skirt-supported tanks insulated using evacuated perlite or helium-filled polyurethane (HePUR) foam. For the perlite-insulated tank, LAC and BAC with liquid nitrogen coolant can reduce the daily boil-off rate from 0.04%/day to, respectively, 0.011%/day and 0.004%/day. The corresponding numbers for CO2-based refrigeration are 0.031%/day and 0.028%/day. For the HePUR-insulated tank, which has a higher baseline boil-off rate of 0.24%/day, reduced boil-off rates down to 0.17%/day and 0.04%/day are achievable using LAC and BAC, respectively. LAC and BAC both offer increased power efficiency in comparison to reliquefaction only.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics