涉及测度的非局部次线性椭圆问题

IF 1.2 3区 数学 Q1 MATHEMATICS
Aye Chan May, Adisak Seesanea
{"title":"涉及测度的非局部次线性椭圆问题","authors":"Aye Chan May,&nbsp;Adisak Seesanea","doi":"10.1016/j.jmaa.2025.129513","DOIUrl":null,"url":null,"abstract":"<div><div>We study Dirichlet problems for fractional Laplace equations of the form <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>n</mi></math></span> where the nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>M</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>+</mo><mi>ω</mi></math></span> involves sublinear terms with <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span> and the coefficients <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>ω</mi></math></span> are nonnegative locally finite Borel measures on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>ω</em>. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn></math></span>, or on arbitrary domains with positive Green's functions in the classical case <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129513"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal sublinear elliptic problems involving measures\",\"authors\":\"Aye Chan May,&nbsp;Adisak Seesanea\",\"doi\":\"10.1016/j.jmaa.2025.129513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study Dirichlet problems for fractional Laplace equations of the form <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>n</mi></math></span> where the nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>M</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>+</mo><mi>ω</mi></math></span> involves sublinear terms with <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></math></span> and the coefficients <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>ω</mi></math></span> are nonnegative locally finite Borel measures on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>ω</em>. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>2</mn></math></span>, or on arbitrary domains with positive Green's functions in the classical case <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 1\",\"pages\":\"Article 129513\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500294X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500294X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了(−Δ)α2u=f(x,u)在Rn中对于0<;α<;n的分数阶拉普拉斯方程的Dirichlet问题,其中非线性f(x,u)=∑i=1Mσiuqi+ω涉及到0<;qi<;1的次线性项,且系数σi,ω是Rn上非负的局部有限Borel测度。在给定的σi和ω条件下,给出了在洛伦兹空间中存在正极小解的一种可能的理论方法。讨论了这类解的唯一性。我们的技术同样适用于当0<;α<;2时的一致有界域上的类似次线性问题,或者经典情况下具有正格林函数的任意域上的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal sublinear elliptic problems involving measures
We study Dirichlet problems for fractional Laplace equations of the form (Δ)α2u=f(x,u) in Rn for 0<α<n where the nonlinearity f(x,u)=i=1Mσiuqi+ω involves sublinear terms with 0<qi<1 and the coefficients σi,ω are nonnegative locally finite Borel measures on Rn. We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on σi and ω. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when 0<α<2, or on arbitrary domains with positive Green's functions in the classical case α=2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信