关于n阶时滞微分方程振荡解的渐近性

IF 1.2 3区 数学 Q1 MATHEMATICS
Elena Braverman , Alexander Domoshnitsky , John Ioannis Stavroulakis
{"title":"关于n阶时滞微分方程振荡解的渐近性","authors":"Elena Braverman ,&nbsp;Alexander Domoshnitsky ,&nbsp;John Ioannis Stavroulakis","doi":"10.1016/j.jmaa.2025.129507","DOIUrl":null,"url":null,"abstract":"<div><div>We study bounded and decaying to zero solutions of the delay differential equation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>−</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>for</mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mspace></mspace><mtext>for </mtext><mspace></mspace><mi>ξ</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo></math></span></span></span> Kondrat'ev and Kiguradze introduced and defined principles of asymptotic behavior for its solution in the sense of the trichotomy: oscillatory, non-oscillatory with absolute values monotonically decaying to zero or monotonically increasing to ∞. Expanding upon such studies, we estimate the oscillation amplitudes of solutions. Decay to zero is established through fast oscillation: once distances between zeros are small enough, the Grönwall inequality growth estimate implies the amplitudes decrease to zero as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Exact growth estimates and calculation of these distances between zeros are proposed through evaluation for the spectral radii of some compact operators associated with the Green's function for an <em>n</em>-point problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129507"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On asymptotics of oscillatory solutions to nth-order delay differential equations\",\"authors\":\"Elena Braverman ,&nbsp;Alexander Domoshnitsky ,&nbsp;John Ioannis Stavroulakis\",\"doi\":\"10.1016/j.jmaa.2025.129507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study bounded and decaying to zero solutions of the delay differential equation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>−</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>for</mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mspace></mspace><mtext>for </mtext><mspace></mspace><mi>ξ</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo></math></span></span></span> Kondrat'ev and Kiguradze introduced and defined principles of asymptotic behavior for its solution in the sense of the trichotomy: oscillatory, non-oscillatory with absolute values monotonically decaying to zero or monotonically increasing to ∞. Expanding upon such studies, we estimate the oscillation amplitudes of solutions. Decay to zero is established through fast oscillation: once distances between zeros are small enough, the Grönwall inequality growth estimate implies the amplitudes decrease to zero as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Exact growth estimates and calculation of these distances between zeros are proposed through evaluation for the spectral radii of some compact operators associated with the Green's function for an <em>n</em>-point problem.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129507\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002884\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002884","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了时滞微分方程x(n)(t)+∑i=1mpi(t)x(t - τi(t))=0fort∈[0,∞],t≥0,对于ξ<;0,x(ξ)=φ(ξ)的有界解和衰零解。Kondrat'ev和Kiguradze在三分法意义上引入并定义了其解的渐近行为原理:振荡的,非振荡的,绝对值单调衰减到零或单调递增到∞。在这些研究的基础上,我们估计了解的振荡幅度。衰减到零是通过快速振荡建立的:一旦零点之间的距离足够小,Grönwall不等式增长估计意味着振幅在t→∞时减小到零。通过对n点问题Green函数相关的一些紧算子的谱半径的求值,提出了精确的增长估计和这些零间距离的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotics of oscillatory solutions to nth-order delay differential equations
We study bounded and decaying to zero solutions of the delay differential equationx(n)(t)+i=1mpi(t)x(tτi(t))=0fort[0,),t0,x(ξ)=φ(ξ)for ξ<0. Kondrat'ev and Kiguradze introduced and defined principles of asymptotic behavior for its solution in the sense of the trichotomy: oscillatory, non-oscillatory with absolute values monotonically decaying to zero or monotonically increasing to ∞. Expanding upon such studies, we estimate the oscillation amplitudes of solutions. Decay to zero is established through fast oscillation: once distances between zeros are small enough, the Grönwall inequality growth estimate implies the amplitudes decrease to zero as t. Exact growth estimates and calculation of these distances between zeros are proposed through evaluation for the spectral radii of some compact operators associated with the Green's function for an n-point problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信