{"title":"负电容双栅MOSFET用于先进的低功耗电子应用","authors":"Amit Kumar , Saurabh Chaturvedi , Satyendra Kumar","doi":"10.1016/j.mejo.2025.106656","DOIUrl":null,"url":null,"abstract":"<div><div>The negative capacitance metal–oxide–semiconductor field-effect transistor (NC-MOSFET) has gained significant attention for its potential in low-power applications. This paper introduces a novel triple-material double-gate negative capacitance MOSFET (TM-DG-NC-MOSFET) architecture, analyzed through technology computer-aided design (TCAD) simulations to assess its DC, analog, linearity, and distortion performance characteristics. For comparison, a triple-material double-gate MOSFET (TM-DG-MOSFET) without the negative capacitance effect is also designed and simulated. Key device parameters are optimized for both architectures. TCAD simulation results at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span> = 0.1 V reveal that the TM-DG-NC-MOSFET achieves a subthreshold swing of 25 mV/decade, an on-state current of <span><math><mrow><mn>3</mn><mo>.</mo><mn>19</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> A/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and a switching ratio of <span><math><mrow><mn>5</mn><mo>.</mo><mn>13</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span>, outperforming the baseline TM-DG-MOSFET, which exhibits a subthreshold swing of 77 mV/decade, an on-state current of <span><math><mrow><mn>0</mn><mo>.</mo><mn>83</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> A/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and a switching ratio of <span><math><mrow><mn>1</mn><mo>.</mo><mn>34</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span>. Comparative analysis shows that the TM-DG-NC-MOSFET offers enhanced DC, analog, and linearity performance with reduced distortion, indicating its suitability as a promising candidate for low-power circuit applications.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"159 ","pages":"Article 106656"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative capacitance double-gate MOSFET for advanced low-power electronic applications\",\"authors\":\"Amit Kumar , Saurabh Chaturvedi , Satyendra Kumar\",\"doi\":\"10.1016/j.mejo.2025.106656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The negative capacitance metal–oxide–semiconductor field-effect transistor (NC-MOSFET) has gained significant attention for its potential in low-power applications. This paper introduces a novel triple-material double-gate negative capacitance MOSFET (TM-DG-NC-MOSFET) architecture, analyzed through technology computer-aided design (TCAD) simulations to assess its DC, analog, linearity, and distortion performance characteristics. For comparison, a triple-material double-gate MOSFET (TM-DG-MOSFET) without the negative capacitance effect is also designed and simulated. Key device parameters are optimized for both architectures. TCAD simulation results at <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>D</mi><mi>S</mi></mrow></msub></math></span> = 0.1 V reveal that the TM-DG-NC-MOSFET achieves a subthreshold swing of 25 mV/decade, an on-state current of <span><math><mrow><mn>3</mn><mo>.</mo><mn>19</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> A/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and a switching ratio of <span><math><mrow><mn>5</mn><mo>.</mo><mn>13</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span>, outperforming the baseline TM-DG-MOSFET, which exhibits a subthreshold swing of 77 mV/decade, an on-state current of <span><math><mrow><mn>0</mn><mo>.</mo><mn>83</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> A/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and a switching ratio of <span><math><mrow><mn>1</mn><mo>.</mo><mn>34</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>7</mn></mrow></msup></mrow></math></span>. Comparative analysis shows that the TM-DG-NC-MOSFET offers enhanced DC, analog, and linearity performance with reduced distortion, indicating its suitability as a promising candidate for low-power circuit applications.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"159 \",\"pages\":\"Article 106656\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125001055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
负电容金属氧化物半导体场效应晶体管(NC-MOSFET)因其在低功耗应用中的潜力而受到广泛关注。本文介绍了一种新型三材料双栅负电容MOSFET (TM-DG-NC-MOSFET)结构,并通过计算机辅助设计(TCAD)仿真技术分析了其直流、模拟、线性和失真等性能特性。为了进行比较,设计并仿真了一种无负电容效应的三材料双栅MOSFET (TM-DG-MOSFET)。关键器件参数针对两种架构进行了优化。在VDS = 0.1 V时的TCAD仿真结果表明,TM-DG-NC-MOSFET的亚阈值摆幅为25 mV/ 10年,导通电流为3.19×10−3 a / 10年,开关比为5.13×107,优于基线TM-DG-MOSFET的亚阈值摆幅为77 mV/ 10年,导通电流为0.83×10−3 a / 10年,开关比为1.34×107。对比分析表明,TM-DG-NC-MOSFET具有增强的直流、模拟和线性性能,并且失真降低,表明其适合低功耗电路应用。
Negative capacitance double-gate MOSFET for advanced low-power electronic applications
The negative capacitance metal–oxide–semiconductor field-effect transistor (NC-MOSFET) has gained significant attention for its potential in low-power applications. This paper introduces a novel triple-material double-gate negative capacitance MOSFET (TM-DG-NC-MOSFET) architecture, analyzed through technology computer-aided design (TCAD) simulations to assess its DC, analog, linearity, and distortion performance characteristics. For comparison, a triple-material double-gate MOSFET (TM-DG-MOSFET) without the negative capacitance effect is also designed and simulated. Key device parameters are optimized for both architectures. TCAD simulation results at = 0.1 V reveal that the TM-DG-NC-MOSFET achieves a subthreshold swing of 25 mV/decade, an on-state current of A/, and a switching ratio of , outperforming the baseline TM-DG-MOSFET, which exhibits a subthreshold swing of 77 mV/decade, an on-state current of A/, and a switching ratio of . Comparative analysis shows that the TM-DG-NC-MOSFET offers enhanced DC, analog, and linearity performance with reduced distortion, indicating its suitability as a promising candidate for low-power circuit applications.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.