高速铁路齿轮钢20CrNi2Mo力学行为的实验与理论研究

IF 4.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
L. Ma, B.Y. Huang, F. Guo, X.M. Li, J.F. Cao, X.H. Zhang
{"title":"高速铁路齿轮钢20CrNi2Mo力学行为的实验与理论研究","authors":"L. Ma,&nbsp;B.Y. Huang,&nbsp;F. Guo,&nbsp;X.M. Li,&nbsp;J.F. Cao,&nbsp;X.H. Zhang","doi":"10.1016/j.engfailanal.2025.109533","DOIUrl":null,"url":null,"abstract":"<div><div>Gears are key components in the transmission system of high-speed railway trains, and their reliability is critical for the safe operation of trains. This study investigates the commonly used high-speed railway gear steel, 20CrNi2Mo, through systematic experimental and theoretical analysis. Based on the experimental results, it was found that the viscous effects of 20CrNi2Mo steel can be neglected, while the material exhibits significant changes in the hysteresis loop shape under cyclic loading. As the number of loading cycles increases, the hysteresis loop gradually becomes shorter and wider. Even when the applied stress is below the yield limit, initial deformation is primarily elastic, but plastic deformation and hysteresis loops develop over time. This phenomenon demonstrates a gradual reduction in the yield stress of the material under identical loading conditions, accompanied by a decline in elastic modulus. It further elucidates the evolution mechanism from elastic deformation to plastic failure during the fatigue process. Based on these experimental findings, the proposed constitutive model integrates improved fatigue damage evolution laws and coupling methods, incorporating elastic modulus and yield stress as damage factors. This model effectively explains material softening, hysteresis loop rotation, and widening observed during the fatigue process. Simulation results confirm that the model accurately captures the mechanical behavior at each stage of fatigue, with predicted life expectancy closely aligning with experimental outcomes. These findings provide a solid theoretical foundation and valuable reference for the failure analysis of gear transmission.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"175 ","pages":"Article 109533"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the mechanical behavior of high-speed railway gear steel 20CrNi2Mo: Experimental and theoretical investigation\",\"authors\":\"L. Ma,&nbsp;B.Y. Huang,&nbsp;F. Guo,&nbsp;X.M. Li,&nbsp;J.F. Cao,&nbsp;X.H. Zhang\",\"doi\":\"10.1016/j.engfailanal.2025.109533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gears are key components in the transmission system of high-speed railway trains, and their reliability is critical for the safe operation of trains. This study investigates the commonly used high-speed railway gear steel, 20CrNi2Mo, through systematic experimental and theoretical analysis. Based on the experimental results, it was found that the viscous effects of 20CrNi2Mo steel can be neglected, while the material exhibits significant changes in the hysteresis loop shape under cyclic loading. As the number of loading cycles increases, the hysteresis loop gradually becomes shorter and wider. Even when the applied stress is below the yield limit, initial deformation is primarily elastic, but plastic deformation and hysteresis loops develop over time. This phenomenon demonstrates a gradual reduction in the yield stress of the material under identical loading conditions, accompanied by a decline in elastic modulus. It further elucidates the evolution mechanism from elastic deformation to plastic failure during the fatigue process. Based on these experimental findings, the proposed constitutive model integrates improved fatigue damage evolution laws and coupling methods, incorporating elastic modulus and yield stress as damage factors. This model effectively explains material softening, hysteresis loop rotation, and widening observed during the fatigue process. Simulation results confirm that the model accurately captures the mechanical behavior at each stage of fatigue, with predicted life expectancy closely aligning with experimental outcomes. These findings provide a solid theoretical foundation and valuable reference for the failure analysis of gear transmission.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"175 \",\"pages\":\"Article 109533\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725002742\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002742","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

齿轮是高速铁路列车传动系统的关键部件,其可靠性对列车的安全运行至关重要。本文通过系统的实验和理论分析,对高速铁路常用齿轮钢20CrNi2Mo进行了研究。实验结果表明,20CrNi2Mo钢在循环载荷作用下的滞回线形状变化明显,但粘滞效应可以忽略不计。随着加载循环次数的增加,滞回线逐渐变短变宽。即使当外加应力低于屈服极限时,初始变形主要是弹性变形,但随着时间的推移,塑性变形和迟滞循环也会发展。这种现象表明,在相同的加载条件下,材料的屈服应力逐渐减小,同时弹性模量下降。进一步阐明了疲劳过程中由弹性变形到塑性破坏的演化机理。基于这些实验结果,提出的本构模型集成了改进的疲劳损伤演化规律和耦合方法,将弹性模量和屈服应力作为损伤因子。该模型有效地解释了疲劳过程中观察到的材料软化、滞回线旋转和变宽现象。仿真结果证实,该模型准确地捕获了疲劳各阶段的力学行为,预测寿命与实验结果非常吻合。研究结果为齿轮传动的失效分析提供了坚实的理论基础和有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the mechanical behavior of high-speed railway gear steel 20CrNi2Mo: Experimental and theoretical investigation
Gears are key components in the transmission system of high-speed railway trains, and their reliability is critical for the safe operation of trains. This study investigates the commonly used high-speed railway gear steel, 20CrNi2Mo, through systematic experimental and theoretical analysis. Based on the experimental results, it was found that the viscous effects of 20CrNi2Mo steel can be neglected, while the material exhibits significant changes in the hysteresis loop shape under cyclic loading. As the number of loading cycles increases, the hysteresis loop gradually becomes shorter and wider. Even when the applied stress is below the yield limit, initial deformation is primarily elastic, but plastic deformation and hysteresis loops develop over time. This phenomenon demonstrates a gradual reduction in the yield stress of the material under identical loading conditions, accompanied by a decline in elastic modulus. It further elucidates the evolution mechanism from elastic deformation to plastic failure during the fatigue process. Based on these experimental findings, the proposed constitutive model integrates improved fatigue damage evolution laws and coupling methods, incorporating elastic modulus and yield stress as damage factors. This model effectively explains material softening, hysteresis loop rotation, and widening observed during the fatigue process. Simulation results confirm that the model accurately captures the mechanical behavior at each stage of fatigue, with predicted life expectancy closely aligning with experimental outcomes. These findings provide a solid theoretical foundation and valuable reference for the failure analysis of gear transmission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Failure Analysis
Engineering Failure Analysis 工程技术-材料科学:表征与测试
CiteScore
7.70
自引率
20.00%
发文量
956
审稿时长
47 days
期刊介绍: Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies. Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials. Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged. Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信