{"title":"限制在系统发育网络中显示多个树的网状事件的数量","authors":"Yufeng Wu , Louxin Zhang","doi":"10.1016/j.jcss.2025.103657","DOIUrl":null,"url":null,"abstract":"<div><div>Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers. The reticulation number for a set of trees is defined as the minimum number of reticulations in a phylogenetic network that displays those trees. A mathematical problem is bounding the reticulation number for multiple trees over a fixed number of taxa. While this problem has been extensively studied for two trees, much less is known about the upper bounds on the reticulation numbers for three or more arbitrary trees. In this paper, we present a few non-trivial upper bounds on reticulation numbers for three or more trees.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"152 ","pages":"Article 103657"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding the number of reticulation events for displaying multiple trees in a phylogenetic network\",\"authors\":\"Yufeng Wu , Louxin Zhang\",\"doi\":\"10.1016/j.jcss.2025.103657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers. The reticulation number for a set of trees is defined as the minimum number of reticulations in a phylogenetic network that displays those trees. A mathematical problem is bounding the reticulation number for multiple trees over a fixed number of taxa. While this problem has been extensively studied for two trees, much less is known about the upper bounds on the reticulation numbers for three or more arbitrary trees. In this paper, we present a few non-trivial upper bounds on reticulation numbers for three or more trees.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"152 \",\"pages\":\"Article 103657\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002200002500039X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002500039X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Bounding the number of reticulation events for displaying multiple trees in a phylogenetic network
Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers. The reticulation number for a set of trees is defined as the minimum number of reticulations in a phylogenetic network that displays those trees. A mathematical problem is bounding the reticulation number for multiple trees over a fixed number of taxa. While this problem has been extensively studied for two trees, much less is known about the upper bounds on the reticulation numbers for three or more arbitrary trees. In this paper, we present a few non-trivial upper bounds on reticulation numbers for three or more trees.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.