任意匿名图上的近最优色散

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Ajay D. Kshemkalyani , Gokarna Sharma
{"title":"任意匿名图上的近最优色散","authors":"Ajay D. Kshemkalyani ,&nbsp;Gokarna Sharma","doi":"10.1016/j.jcss.2025.103656","DOIUrl":null,"url":null,"abstract":"<div><div>Given an undirected, anonymous, port-labeled graph of <em>n</em> memory-less nodes, <em>m</em> edges, and degree Δ, we consider the problem of dispersing <span><math><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> robots (or tokens) positioned initially arbitrarily on the nodes of the graph to exactly <em>k</em> different nodes, one on each node. The objective is to simultaneously minimize time and memory requirement at each robot. The best previously known algorithm solves this problem in <span><math><mi>O</mi><mo>(</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mo>,</mo><mi>k</mi><mi>Δ</mi><mo>}</mo><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>ℓ</mi><mo>)</mo></math></span> time storing <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span> bits at each robot, where <span><math><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> is the number of nodes with multiple robots positioned on them in the initial configuration. In this paper, we present a novel multi-source DFS traversal algorithm solving this problem in <span><math><mi>O</mi><mo>(</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mo>,</mo><mi>k</mi><mi>Δ</mi><mo>}</mo><mo>)</mo></math></span> time with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span> bits at each robot. The memory complexity of our algorithm is already asymptotically optimal and the time complexity is asymptotically optimal for the graphs of constant degree <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. The result holds in both synchronous and asynchronous settings.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"152 ","pages":"Article 103656"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-optimal dispersion on arbitrary anonymous graphs\",\"authors\":\"Ajay D. Kshemkalyani ,&nbsp;Gokarna Sharma\",\"doi\":\"10.1016/j.jcss.2025.103656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given an undirected, anonymous, port-labeled graph of <em>n</em> memory-less nodes, <em>m</em> edges, and degree Δ, we consider the problem of dispersing <span><math><mi>k</mi><mo>≤</mo><mi>n</mi></math></span> robots (or tokens) positioned initially arbitrarily on the nodes of the graph to exactly <em>k</em> different nodes, one on each node. The objective is to simultaneously minimize time and memory requirement at each robot. The best previously known algorithm solves this problem in <span><math><mi>O</mi><mo>(</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mo>,</mo><mi>k</mi><mi>Δ</mi><mo>}</mo><mo>⋅</mo><mi>log</mi><mo>⁡</mo><mi>ℓ</mi><mo>)</mo></math></span> time storing <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span> bits at each robot, where <span><math><mi>ℓ</mi><mo>≤</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> is the number of nodes with multiple robots positioned on them in the initial configuration. In this paper, we present a novel multi-source DFS traversal algorithm solving this problem in <span><math><mi>O</mi><mo>(</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>m</mi><mo>,</mo><mi>k</mi><mi>Δ</mi><mo>}</mo><mo>)</mo></math></span> time with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>k</mi><mo>+</mo><mi>Δ</mi><mo>)</mo><mo>)</mo></math></span> bits at each robot. The memory complexity of our algorithm is already asymptotically optimal and the time complexity is asymptotically optimal for the graphs of constant degree <span><math><mi>Δ</mi><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. The result holds in both synchronous and asynchronous settings.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"152 \",\"pages\":\"Article 103656\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000388\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000388","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有n个无内存节点、m条边和Δ度的无向、匿名、端口标记的图,我们考虑将k≤n个机器人(或令牌)分散到恰好k个不同的节点上的问题,每个节点上一个。目标是同时最小化每个机器人的时间和内存需求。目前已知的最好的算法在每个机器人上用O(min (m,kΔ)}⋅log (r))时间存储O(log (k+Δ))个比特来解决这个问题,其中,r≤k/2是初始配置中有多个机器人定位在其上的节点数量。在本文中,我们提出了一种新的多源DFS遍历算法,在O(min (m,kΔ)})时间内用O(log (k+Δ))位在每个机器人上解决了这个问题。对于常次图Δ=O(1),我们算法的内存复杂度已经是渐近最优的,时间复杂度也是渐近最优的。结果在同步和异步设置中都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal dispersion on arbitrary anonymous graphs
Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and degree Δ, we consider the problem of dispersing kn robots (or tokens) positioned initially arbitrarily on the nodes of the graph to exactly k different nodes, one on each node. The objective is to simultaneously minimize time and memory requirement at each robot. The best previously known algorithm solves this problem in O(min{m,kΔ}log) time storing O(log(k+Δ)) bits at each robot, where k/2 is the number of nodes with multiple robots positioned on them in the initial configuration. In this paper, we present a novel multi-source DFS traversal algorithm solving this problem in O(min{m,kΔ}) time with O(log(k+Δ)) bits at each robot. The memory complexity of our algorithm is already asymptotically optimal and the time complexity is asymptotically optimal for the graphs of constant degree Δ=O(1). The result holds in both synchronous and asynchronous settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信