{"title":"脑AMPK信号通过脑促食欲素和迷走神经通路改善大鼠肠道屏障功能","authors":"Takuya Funayama , Tsukasa Nozu , Masatomo Ishioh , Chihiro Sumi , Takeshi Saito , Mayumi Hatayama , Masayo Yamamoto , Motohiro Shindo , Shuichiro Takahashi , Toshikatsu Okumura","doi":"10.1016/j.neulet.2025.138208","DOIUrl":null,"url":null,"abstract":"<div><div>Leaky gut, an increased intestinal permeability, has been described in many diseases. We have recently demonstrated that neuropeptides such as orexin in the brain improved leaky gut, suggesting that the brain is involved in maintaining intestinal barrier function. It has been suggested that AMPK in the hypothalamus play a role in food intake. Because the hypothalamus is involved in the regulation of not only feeding behavior but also gut function, the present study was performed to clarify a hypothesis that AMPK in the brain regulate gut barrier function. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue in rats. Intracisternal AICAR, an AMPK activator, could reduce LPS-induced colonic hyperpermeability while peripherally administered AICAR failed to change it. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal but not subcutaneous compound C, AMPK inhibitor, atropine or vagotomy. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal orexin receptor antagonist but not oxytocin or GLP-1 receptor antagonist. Intracisternal compound C prevented brain oxytocin or GLP-1 but not orexin-induced improvement of colonic hyperpermeability. These results suggest that activation of brain AMPK is capable of reducing colonic hyperpermeability through brain orexin signaling and the vagus nerve. In addition, endogenous AMPK in the brain may mediate the oxytocin or GLP-induced improvement of colonic hyperpermeability. We would suggest that improvement of leaky gut by activation of brain AMPK may play a role in leaky gut-related diseases.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"854 ","pages":"Article 138208"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain AMPK signaling improves intestinal barrier function through brain orexin and the vagal pathway in rats\",\"authors\":\"Takuya Funayama , Tsukasa Nozu , Masatomo Ishioh , Chihiro Sumi , Takeshi Saito , Mayumi Hatayama , Masayo Yamamoto , Motohiro Shindo , Shuichiro Takahashi , Toshikatsu Okumura\",\"doi\":\"10.1016/j.neulet.2025.138208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leaky gut, an increased intestinal permeability, has been described in many diseases. We have recently demonstrated that neuropeptides such as orexin in the brain improved leaky gut, suggesting that the brain is involved in maintaining intestinal barrier function. It has been suggested that AMPK in the hypothalamus play a role in food intake. Because the hypothalamus is involved in the regulation of not only feeding behavior but also gut function, the present study was performed to clarify a hypothesis that AMPK in the brain regulate gut barrier function. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue in rats. Intracisternal AICAR, an AMPK activator, could reduce LPS-induced colonic hyperpermeability while peripherally administered AICAR failed to change it. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal but not subcutaneous compound C, AMPK inhibitor, atropine or vagotomy. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal orexin receptor antagonist but not oxytocin or GLP-1 receptor antagonist. Intracisternal compound C prevented brain oxytocin or GLP-1 but not orexin-induced improvement of colonic hyperpermeability. These results suggest that activation of brain AMPK is capable of reducing colonic hyperpermeability through brain orexin signaling and the vagus nerve. In addition, endogenous AMPK in the brain may mediate the oxytocin or GLP-induced improvement of colonic hyperpermeability. We would suggest that improvement of leaky gut by activation of brain AMPK may play a role in leaky gut-related diseases.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"854 \",\"pages\":\"Article 138208\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000965\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000965","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Brain AMPK signaling improves intestinal barrier function through brain orexin and the vagal pathway in rats
Leaky gut, an increased intestinal permeability, has been described in many diseases. We have recently demonstrated that neuropeptides such as orexin in the brain improved leaky gut, suggesting that the brain is involved in maintaining intestinal barrier function. It has been suggested that AMPK in the hypothalamus play a role in food intake. Because the hypothalamus is involved in the regulation of not only feeding behavior but also gut function, the present study was performed to clarify a hypothesis that AMPK in the brain regulate gut barrier function. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue in rats. Intracisternal AICAR, an AMPK activator, could reduce LPS-induced colonic hyperpermeability while peripherally administered AICAR failed to change it. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal but not subcutaneous compound C, AMPK inhibitor, atropine or vagotomy. The improvement of colonic hyperpermeability by intracisternal AICAR was blocked by intracisternal orexin receptor antagonist but not oxytocin or GLP-1 receptor antagonist. Intracisternal compound C prevented brain oxytocin or GLP-1 but not orexin-induced improvement of colonic hyperpermeability. These results suggest that activation of brain AMPK is capable of reducing colonic hyperpermeability through brain orexin signaling and the vagus nerve. In addition, endogenous AMPK in the brain may mediate the oxytocin or GLP-induced improvement of colonic hyperpermeability. We would suggest that improvement of leaky gut by activation of brain AMPK may play a role in leaky gut-related diseases.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.