IF 0.7 2区 数学 Q2 MATHEMATICS
Sebastian Heinrich
{"title":"Module monoidal categories as categorification of associative algebras","authors":"Sebastian Heinrich","doi":"10.1016/j.jpaa.2025.107959","DOIUrl":null,"url":null,"abstract":"<div><div>In <span><span>[12]</span></span>, the notion of a module tensor category was introduced as a braided monoidal central functor <span><math><mi>F</mi><mo>:</mo><mi>V</mi><mo>⟶</mo><mi>T</mi></math></span> from a braided monoidal category <span><math><mi>V</mi></math></span> to a monoidal category <span><math><mi>T</mi></math></span>, which is a monoidal functor <span><math><mi>F</mi><mo>:</mo><mi>V</mi><mo>⟶</mo><mi>T</mi></math></span> together with a braided monoidal lift <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>Z</mi></mrow></msup><mo>:</mo><mi>V</mi><mo>⟶</mo><mi>Z</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> to the Drinfeld center of <span><math><mi>T</mi></math></span>. This is a categorification of a unital associative algebra <em>A</em> over a commutative ring <em>R</em> via a ring homomorphism <span><math><mi>f</mi><mo>:</mo><mi>R</mi><mo>⟶</mo><mi>Z</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> into the center of <em>A</em>. In this paper, we want to categorify the characterization of an associative algebra as a (not necessarily unital) ring <em>A</em> together with an <em>R</em>–module structure over a commutative ring <em>R</em>, such that multiplication in <em>A</em> and action of <em>R</em> on <em>A</em> are compatible. In doing so, we introduce the more general notion of <em>non–unital module monoidal categories</em> and obtain 2–categories of non–unital and unital module monoidal categories, their functors and natural transformations. We will show that in the unital case the latter definition is equivalent to the definition in <span><span>[12]</span></span> by explicitly writing down an equivalence of 2–categories.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107959"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000982","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在[12]中,模块张量范畴的概念被引入为从一个辫状单环范畴 V 到一个单环范畴 T 的辫状单环中心函子 F:V⟶T,它是一个单环函子 F:V⟶T 连同到 T 的 Drinfeld 中心的辫状单环提升 FZ:V⟶Z(T)。在本文中,我们希望把关联代数的特征归类为一个(不一定是单整的)环 A 和一个交换环 R 上的 R 模块结构,从而使 A 中的乘法和 R 对 A 的作用是相容的。在此过程中,我们引入了非空模单范畴这一更一般的概念,并得到了非空模单范畴和空模单范畴的 2 个范畴、它们的函数和自然变换。我们将通过明确写出 2 维类的等价性来证明,在非ital 的情况下,后一个定义等价于 [12] 中的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Module monoidal categories as categorification of associative algebras
In [12], the notion of a module tensor category was introduced as a braided monoidal central functor F:VT from a braided monoidal category V to a monoidal category T, which is a monoidal functor F:VT together with a braided monoidal lift FZ:VZ(T) to the Drinfeld center of T. This is a categorification of a unital associative algebra A over a commutative ring R via a ring homomorphism f:RZ(A) into the center of A. In this paper, we want to categorify the characterization of an associative algebra as a (not necessarily unital) ring A together with an R–module structure over a commutative ring R, such that multiplication in A and action of R on A are compatible. In doing so, we introduce the more general notion of non–unital module monoidal categories and obtain 2–categories of non–unital and unital module monoidal categories, their functors and natural transformations. We will show that in the unital case the latter definition is equivalent to the definition in [12] by explicitly writing down an equivalence of 2–categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信