Nabila Abbad , Roland Redon , Benjamin Oursel , Christophe Lepoupon , Gaël Durrieu , Houssam Hajjoul , Stéphane Mounier
{"title":"钐(Sm3+)和铜(Cu2+)与溶解有机物的络合性能","authors":"Nabila Abbad , Roland Redon , Benjamin Oursel , Christophe Lepoupon , Gaël Durrieu , Houssam Hajjoul , Stéphane Mounier","doi":"10.1016/j.marchem.2025.104514","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the speciation of Samarium (III) in the presence of natural organic matter, standard humic and fulvic acids from the Suwannee River. Fluorescence quenching and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) were employed to analyze various samples, using logarithmic additions of Sm<sup>3+</sup> and Cu<sup>2+</sup>. The 1 L:1 M and 1 L:1 M:H models were applied to account for pH effects, yielding pH-independent complexant parameters K<sub>Sm</sub> and K<sub>Cu</sub> as well as <span><math><msub><mi>C</mi><msub><mi>L</mi><mi>Sm</mi></msub></msub><mspace></mspace><mi>and</mi><mspace></mspace><msub><mi>C</mi><msub><mi>L</mi><mi>Cu</mi></msub></msub></math></span>that revealed specific binding sites. A notably higher affinity was observed for humic acids with Sm<sup>3+</sup> compared to Cu<sup>2+</sup>. The logarithms of the complexation constant for the Sm<sup>3+</sup> were 5.4, 5.2 and 4.7 for SRNOM, SRHA and SRFA, respectively. Fluorescence quenching analyses identified two distinct fluorescent components related to dissolved organic matter, showing different affinities for Sm<sup>3+</sup> and Cu<sup>2+</sup> that varied with pH. Humic acids exhibited the highest complexation capacity for Sm<sup>3+</sup>, attributed to their structural properties, with complexation capacities of 4.77 10<sup>−4</sup>, 0.82 and 4.46 10<sup>−3</sup> mol of Sm per g of SRNOM, SRHA and SRFA, respectively. Temporal deconvolution of fluorescence responses revealed a tri-exponential decay with three lifetimes (τ<sub>1</sub>, τ<sub>2</sub> and τ<sub>3</sub>) remaining relatively constant during Sm<sup>3+</sup> or Cu<sup>2+</sup> titrations, confirming that the fluorescence quenching is primarily a static mechanism. Speciation modeling demonstrated a shift from humic-associated complexes in freshwater to carbonate complexes in seawater as salinity increases. These findings highlight the importance of accurately characterizing DOM complexation properties to understand the environmental behavior of trace metals, particularly in response to salinity and carbon concentration gradients in estuarine systems.</div></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"270 ","pages":"Article 104514"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Samarium (Sm3+) and copper (Cu2+) complexation property with dissolved organic matter\",\"authors\":\"Nabila Abbad , Roland Redon , Benjamin Oursel , Christophe Lepoupon , Gaël Durrieu , Houssam Hajjoul , Stéphane Mounier\",\"doi\":\"10.1016/j.marchem.2025.104514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the speciation of Samarium (III) in the presence of natural organic matter, standard humic and fulvic acids from the Suwannee River. Fluorescence quenching and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) were employed to analyze various samples, using logarithmic additions of Sm<sup>3+</sup> and Cu<sup>2+</sup>. The 1 L:1 M and 1 L:1 M:H models were applied to account for pH effects, yielding pH-independent complexant parameters K<sub>Sm</sub> and K<sub>Cu</sub> as well as <span><math><msub><mi>C</mi><msub><mi>L</mi><mi>Sm</mi></msub></msub><mspace></mspace><mi>and</mi><mspace></mspace><msub><mi>C</mi><msub><mi>L</mi><mi>Cu</mi></msub></msub></math></span>that revealed specific binding sites. A notably higher affinity was observed for humic acids with Sm<sup>3+</sup> compared to Cu<sup>2+</sup>. The logarithms of the complexation constant for the Sm<sup>3+</sup> were 5.4, 5.2 and 4.7 for SRNOM, SRHA and SRFA, respectively. Fluorescence quenching analyses identified two distinct fluorescent components related to dissolved organic matter, showing different affinities for Sm<sup>3+</sup> and Cu<sup>2+</sup> that varied with pH. Humic acids exhibited the highest complexation capacity for Sm<sup>3+</sup>, attributed to their structural properties, with complexation capacities of 4.77 10<sup>−4</sup>, 0.82 and 4.46 10<sup>−3</sup> mol of Sm per g of SRNOM, SRHA and SRFA, respectively. Temporal deconvolution of fluorescence responses revealed a tri-exponential decay with three lifetimes (τ<sub>1</sub>, τ<sub>2</sub> and τ<sub>3</sub>) remaining relatively constant during Sm<sup>3+</sup> or Cu<sup>2+</sup> titrations, confirming that the fluorescence quenching is primarily a static mechanism. Speciation modeling demonstrated a shift from humic-associated complexes in freshwater to carbonate complexes in seawater as salinity increases. These findings highlight the importance of accurately characterizing DOM complexation properties to understand the environmental behavior of trace metals, particularly in response to salinity and carbon concentration gradients in estuarine systems.</div></div>\",\"PeriodicalId\":18219,\"journal\":{\"name\":\"Marine Chemistry\",\"volume\":\"270 \",\"pages\":\"Article 104514\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304420325000295\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Chemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304420325000295","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Samarium (Sm3+) and copper (Cu2+) complexation property with dissolved organic matter
This study investigates the speciation of Samarium (III) in the presence of natural organic matter, standard humic and fulvic acids from the Suwannee River. Fluorescence quenching and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) were employed to analyze various samples, using logarithmic additions of Sm3+ and Cu2+. The 1 L:1 M and 1 L:1 M:H models were applied to account for pH effects, yielding pH-independent complexant parameters KSm and KCu as well as that revealed specific binding sites. A notably higher affinity was observed for humic acids with Sm3+ compared to Cu2+. The logarithms of the complexation constant for the Sm3+ were 5.4, 5.2 and 4.7 for SRNOM, SRHA and SRFA, respectively. Fluorescence quenching analyses identified two distinct fluorescent components related to dissolved organic matter, showing different affinities for Sm3+ and Cu2+ that varied with pH. Humic acids exhibited the highest complexation capacity for Sm3+, attributed to their structural properties, with complexation capacities of 4.77 10−4, 0.82 and 4.46 10−3 mol of Sm per g of SRNOM, SRHA and SRFA, respectively. Temporal deconvolution of fluorescence responses revealed a tri-exponential decay with three lifetimes (τ1, τ2 and τ3) remaining relatively constant during Sm3+ or Cu2+ titrations, confirming that the fluorescence quenching is primarily a static mechanism. Speciation modeling demonstrated a shift from humic-associated complexes in freshwater to carbonate complexes in seawater as salinity increases. These findings highlight the importance of accurately characterizing DOM complexation properties to understand the environmental behavior of trace metals, particularly in response to salinity and carbon concentration gradients in estuarine systems.
期刊介绍:
Marine Chemistry is an international medium for the publication of original studies and occasional reviews in the field of chemistry in the marine environment, with emphasis on the dynamic approach. The journal endeavours to cover all aspects, from chemical processes to theoretical and experimental work, and, by providing a central channel of communication, to speed the flow of information in this relatively new and rapidly expanding discipline.