具有三次非线性的Schrödinger方程线性化BDF2 Galerkin格式的新误差分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Huaijun Yang
{"title":"具有三次非线性的Schrödinger方程线性化BDF2 Galerkin格式的新误差分析","authors":"Huaijun Yang","doi":"10.1016/j.camwa.2025.03.025","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a linearized 2-step backward differentiation formula (BDF2) Galerkin method is proposed and investigated for Schrödinger equation with cubic nonlinearity and unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 83-96"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new error analysis of a linearized BDF2 Galerkin scheme for Schrödinger equation with cubic nonlinearity\",\"authors\":\"Huaijun Yang\",\"doi\":\"10.1016/j.camwa.2025.03.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a linearized 2-step backward differentiation formula (BDF2) Galerkin method is proposed and investigated for Schrödinger equation with cubic nonlinearity and unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"188 \",\"pages\":\"Pages 83-96\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212500121X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500121X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对具有三次非线性的Schrödinger方程,提出并研究了一种线性化的2步后向微分公式(BDF2) Galerkin方法,并在不受时间步长限制的情况下获得了l2范数的无条件最优误差估计。分析的关键是用数学归纳法将数值解和精确解的里兹投影之间的h1范数绑定在两种情况下,而不是在以前的工作中使用的误差分割技术。最后给出了一些数值结果来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new error analysis of a linearized BDF2 Galerkin scheme for Schrödinger equation with cubic nonlinearity
In this paper, a linearized 2-step backward differentiation formula (BDF2) Galerkin method is proposed and investigated for Schrödinger equation with cubic nonlinearity and unconditionally optimal error estimate in L2-norm is obtained without any time-step restriction. The key to the analysis is to bound the H1-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信