Yue Yan , Meihan Jia , Zuohang Zhou , Shensheng Xiao , Peili Lin , Yiying Wang , Yang Fu , Xuedong Wang
{"title":"超声波处理对荞麦淀粉理化性质的影响:基于超声波功率和含水率","authors":"Yue Yan , Meihan Jia , Zuohang Zhou , Shensheng Xiao , Peili Lin , Yiying Wang , Yang Fu , Xuedong Wang","doi":"10.1016/j.ultsonch.2025.107333","DOIUrl":null,"url":null,"abstract":"<div><div>The physicochemical property of native buckwheat starch (BWS) limits the application, which attracts more attention in the food industry. The objective of this study was to investigate the effects of different ultrasonic powers combined with moisture contents on the structure and physicochemical properties of BWS. The results showed that ultrasonic treatment significantly reduced the gel hardness and loss modulus of BWS. The increase in water content during ultrasound effectively enhanced the swelling power of BWS and reduced the peak viscosity. Besides, with the increase of water content and ultrasonic power, the crystallinity of BWS decreased significantly, and the formation of ordered structures was suppressed. In addition, after ultrasonic treatment, the particle size of BWS was decreased, and the surface became rough and concave. In short, ultrasonic treatment effectively improves the processability of BWS and provides a new theoretical basis for physical treatment in the production of cereal starch.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"116 ","pages":"Article 107333"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrasonic treatment on the physicochemical properties of buckwheat starch: Based on the ultrasonic power and moisture content\",\"authors\":\"Yue Yan , Meihan Jia , Zuohang Zhou , Shensheng Xiao , Peili Lin , Yiying Wang , Yang Fu , Xuedong Wang\",\"doi\":\"10.1016/j.ultsonch.2025.107333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The physicochemical property of native buckwheat starch (BWS) limits the application, which attracts more attention in the food industry. The objective of this study was to investigate the effects of different ultrasonic powers combined with moisture contents on the structure and physicochemical properties of BWS. The results showed that ultrasonic treatment significantly reduced the gel hardness and loss modulus of BWS. The increase in water content during ultrasound effectively enhanced the swelling power of BWS and reduced the peak viscosity. Besides, with the increase of water content and ultrasonic power, the crystallinity of BWS decreased significantly, and the formation of ordered structures was suppressed. In addition, after ultrasonic treatment, the particle size of BWS was decreased, and the surface became rough and concave. In short, ultrasonic treatment effectively improves the processability of BWS and provides a new theoretical basis for physical treatment in the production of cereal starch.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"116 \",\"pages\":\"Article 107333\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001129\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001129","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Effect of ultrasonic treatment on the physicochemical properties of buckwheat starch: Based on the ultrasonic power and moisture content
The physicochemical property of native buckwheat starch (BWS) limits the application, which attracts more attention in the food industry. The objective of this study was to investigate the effects of different ultrasonic powers combined with moisture contents on the structure and physicochemical properties of BWS. The results showed that ultrasonic treatment significantly reduced the gel hardness and loss modulus of BWS. The increase in water content during ultrasound effectively enhanced the swelling power of BWS and reduced the peak viscosity. Besides, with the increase of water content and ultrasonic power, the crystallinity of BWS decreased significantly, and the formation of ordered structures was suppressed. In addition, after ultrasonic treatment, the particle size of BWS was decreased, and the surface became rough and concave. In short, ultrasonic treatment effectively improves the processability of BWS and provides a new theoretical basis for physical treatment in the production of cereal starch.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.