不同织型再生纺织复合材料增强材料悬垂性能的实验与数值研究

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Bo Chen, Bowen Xu, Yang Zhang, Xiaoling Liu
{"title":"不同织型再生纺织复合材料增强材料悬垂性能的实验与数值研究","authors":"Bo Chen,&nbsp;Bowen Xu,&nbsp;Yang Zhang,&nbsp;Xiaoling Liu","doi":"10.1016/j.compstruct.2025.119123","DOIUrl":null,"url":null,"abstract":"<div><div>This study experimentally and numerically analyzes the draping of recycled fabric with different weave patterns. The recycled fabric was obtained from waste prepregs using a designed microwave thermal process. It is shown that the yarn width and density remain unchanged in the recycling process, but the fiber surface properties are changed, including a decrease in diameter and an increase in roughness. Due to the removal of sizing agents and the fiber diameter decrease, the recycling process also leads to a reduction in fabric thickness and areal density by about 9%. This change significantly modified the mechanical behavior of recycled fabrics compared to virgin fabrics, especially the bending stiffness of recycled fabrics is greatly reduced. Hemisphere and square box forming tests indicated that recycled fabrics tend to wrinkle more than virgin fabrics, and fabrics with a loose structure and less crimp lead to good drapability. A stress resultant shell approach gives simulation results that are in agreement with experiments, particularly the onset of wrinkling. This numerical approach takes into account tensile, in-plane shear, bending and friction behavior of textile reinforcement to reflect the change in fiber properties and weave structures, which proved to have a notable influence on fabric drapability.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"363 ","pages":"Article 119123"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study on draping behavior of recycled textile composite reinforcement with different weave patterns\",\"authors\":\"Bo Chen,&nbsp;Bowen Xu,&nbsp;Yang Zhang,&nbsp;Xiaoling Liu\",\"doi\":\"10.1016/j.compstruct.2025.119123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study experimentally and numerically analyzes the draping of recycled fabric with different weave patterns. The recycled fabric was obtained from waste prepregs using a designed microwave thermal process. It is shown that the yarn width and density remain unchanged in the recycling process, but the fiber surface properties are changed, including a decrease in diameter and an increase in roughness. Due to the removal of sizing agents and the fiber diameter decrease, the recycling process also leads to a reduction in fabric thickness and areal density by about 9%. This change significantly modified the mechanical behavior of recycled fabrics compared to virgin fabrics, especially the bending stiffness of recycled fabrics is greatly reduced. Hemisphere and square box forming tests indicated that recycled fabrics tend to wrinkle more than virgin fabrics, and fabrics with a loose structure and less crimp lead to good drapability. A stress resultant shell approach gives simulation results that are in agreement with experiments, particularly the onset of wrinkling. This numerical approach takes into account tensile, in-plane shear, bending and friction behavior of textile reinforcement to reflect the change in fiber properties and weave structures, which proved to have a notable influence on fabric drapability.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"363 \",\"pages\":\"Article 119123\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325002880\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002880","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文对不同织型再生织物的悬垂性能进行了实验和数值分析。采用设计的微波加热工艺,从废预浸料中获得再生织物。结果表明,在回收过程中,纱线的宽度和密度保持不变,但纤维的表面性能发生变化,包括直径减小和粗糙度增加。由于施胶剂的去除和纤维直径的减小,回收过程还导致织物厚度和面密度减少约9%。这一变化明显改变了再生织物的力学性能,特别是再生织物的抗弯刚度大大降低。半球和方盒成型试验表明,回收织物比原始织物更容易起皱,结构松散、卷曲少的织物具有良好的垂性。应力产生壳方法给出了与实验一致的模拟结果,特别是起皱的开始。该数值方法考虑了织物增强物的拉伸、面内剪切、弯曲和摩擦行为,以反映纤维性能和组织结构的变化,这些变化对织物的垂降性有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical study on draping behavior of recycled textile composite reinforcement with different weave patterns
This study experimentally and numerically analyzes the draping of recycled fabric with different weave patterns. The recycled fabric was obtained from waste prepregs using a designed microwave thermal process. It is shown that the yarn width and density remain unchanged in the recycling process, but the fiber surface properties are changed, including a decrease in diameter and an increase in roughness. Due to the removal of sizing agents and the fiber diameter decrease, the recycling process also leads to a reduction in fabric thickness and areal density by about 9%. This change significantly modified the mechanical behavior of recycled fabrics compared to virgin fabrics, especially the bending stiffness of recycled fabrics is greatly reduced. Hemisphere and square box forming tests indicated that recycled fabrics tend to wrinkle more than virgin fabrics, and fabrics with a loose structure and less crimp lead to good drapability. A stress resultant shell approach gives simulation results that are in agreement with experiments, particularly the onset of wrinkling. This numerical approach takes into account tensile, in-plane shear, bending and friction behavior of textile reinforcement to reflect the change in fiber properties and weave structures, which proved to have a notable influence on fabric drapability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信