{"title":"具有给定路径Pk的无桥图的定向直径","authors":"Ruijuan Li, Shufeng Chen","doi":"10.1016/j.disc.2025.114509","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a bridgeless undirected graph. The oriented diameter of <em>G</em> is the minimum diameter of any strongly connected orientation of <em>G</em>. Dankelmann, Guo and Surmacs [J. Graph Theory, 88 (2018), 5-17] showed that every bridgeless graph <em>G</em> of order <em>n</em> has an oriented diameter at most <span><math><mi>n</mi><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>3</mn></math></span>, where Δ is the maximum degree of <em>G</em>. By defining <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>∖</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every subgraph <em>H</em> of <em>G</em>, they proved that for an edge <em>e</em>, <em>G</em> has an orientation of diameter at most <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>+</mo><mn>5</mn></math></span>. In this paper, we generalize the above-mentioned results by substituting a vertex or an edge <em>e</em> by a given path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <em>G</em>. We first give an algorithm to cover <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with some specific cycles, and then prove the upper bound <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>+</mo><mn>2</mn><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>3</mn></math></span> on the oriented diameter. We provide examples to show that our bound is sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114509"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oriented diameter of a bridgeless graph with the given path Pk\",\"authors\":\"Ruijuan Li, Shufeng Chen\",\"doi\":\"10.1016/j.disc.2025.114509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> be a bridgeless undirected graph. The oriented diameter of <em>G</em> is the minimum diameter of any strongly connected orientation of <em>G</em>. Dankelmann, Guo and Surmacs [J. Graph Theory, 88 (2018), 5-17] showed that every bridgeless graph <em>G</em> of order <em>n</em> has an oriented diameter at most <span><math><mi>n</mi><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>3</mn></math></span>, where Δ is the maximum degree of <em>G</em>. By defining <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></msub><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>∖</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every subgraph <em>H</em> of <em>G</em>, they proved that for an edge <em>e</em>, <em>G</em> has an orientation of diameter at most <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>+</mo><mn>5</mn></math></span>. In this paper, we generalize the above-mentioned results by substituting a vertex or an edge <em>e</em> by a given path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> in <em>G</em>. We first give an algorithm to cover <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with some specific cycles, and then prove the upper bound <span><math><mi>n</mi><mo>−</mo><mo>|</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo><mo>|</mo><mo>+</mo><mn>2</mn><mo>⌊</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>+</mo><mn>3</mn></math></span> on the oriented diameter. We provide examples to show that our bound is sharp.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114509\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G=(V,E)为无桥无向图。G的取向直径是G的任意强连通取向的最小直径。图论,88(2018),5-17]证明了每个n阶的无桥图G都有一个不超过n−Δ+3的定向直径,其中Δ是G的最大度。通过定义NG(H)=∈v (H)NG(v)∈v (H) v (H),他们证明了对于边e, G有一个不超过n−|NG(e)|+5的定向直径。在本文中,我们通过将顶点或边e替换为g中的给定路径Pk=v1v2⋯vk来推广上述结果。我们首先给出了一种算法,用一些特定的循环覆盖Pk,然后证明了定向直径上n−|NG(Pk)|+2⌊k2⌋+3的上界。我们提供了一些例子来证明我们的界是明确的。
The oriented diameter of a bridgeless graph with the given path Pk
Let be a bridgeless undirected graph. The oriented diameter of G is the minimum diameter of any strongly connected orientation of G. Dankelmann, Guo and Surmacs [J. Graph Theory, 88 (2018), 5-17] showed that every bridgeless graph G of order n has an oriented diameter at most , where Δ is the maximum degree of G. By defining for every subgraph H of G, they proved that for an edge e, G has an orientation of diameter at most . In this paper, we generalize the above-mentioned results by substituting a vertex or an edge e by a given path in G. We first give an algorithm to cover with some specific cycles, and then prove the upper bound on the oriented diameter. We provide examples to show that our bound is sharp.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.