电阻抗断层扫描的物理信息神经网络

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Danny Smyl , Tyler N. Tallman , Laura Homa , Chenoa Flournoy , Sarah J. Hamilton , John Wertz
{"title":"电阻抗断层扫描的物理信息神经网络","authors":"Danny Smyl ,&nbsp;Tyler N. Tallman ,&nbsp;Laura Homa ,&nbsp;Chenoa Flournoy ,&nbsp;Sarah J. Hamilton ,&nbsp;John Wertz","doi":"10.1016/j.neunet.2025.107410","DOIUrl":null,"url":null,"abstract":"<div><div>Electrical Impedance Tomography (EIT) is an imaging modality used to reconstruct the internal conductivity distribution of a domain via boundary voltage measurements. In this paper, we present a novel EIT approach for integrated sensing of composite structures utilizing Physics Informed Neural Networks (PINNs). Unlike traditional data-driven only models, PINNs incorporate underlying physical principles governing EIT directly into the learning process, enabling precise and rapid reconstructions. We demonstrate the effectiveness of PINNs with a variety of physical constraints for integrated sensing. The proposed approach has potential to enhance material characterization and condition monitoring, offering a robust alternative to classical EIT approaches.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107410"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics Informed Neural Networks for Electrical Impedance Tomography\",\"authors\":\"Danny Smyl ,&nbsp;Tyler N. Tallman ,&nbsp;Laura Homa ,&nbsp;Chenoa Flournoy ,&nbsp;Sarah J. Hamilton ,&nbsp;John Wertz\",\"doi\":\"10.1016/j.neunet.2025.107410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrical Impedance Tomography (EIT) is an imaging modality used to reconstruct the internal conductivity distribution of a domain via boundary voltage measurements. In this paper, we present a novel EIT approach for integrated sensing of composite structures utilizing Physics Informed Neural Networks (PINNs). Unlike traditional data-driven only models, PINNs incorporate underlying physical principles governing EIT directly into the learning process, enabling precise and rapid reconstructions. We demonstrate the effectiveness of PINNs with a variety of physical constraints for integrated sensing. The proposed approach has potential to enhance material characterization and condition monitoring, offering a robust alternative to classical EIT approaches.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107410\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025002898\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025002898","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

电阻抗断层成像(EIT)是一种成像方式,用于重建内部电导率分布的一个领域,通过边界电压测量。在本文中,我们提出了一种利用物理信息神经网络(pinn)进行复合材料结构综合传感的新型EIT方法。与传统的数据驱动模型不同,pinn将控制EIT的基本物理原理直接纳入学习过程,从而实现精确和快速的重建。我们证明了pin在各种物理约束下对集成传感的有效性。所提出的方法具有增强材料表征和状态监测的潜力,为经典的EIT方法提供了一个强大的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics Informed Neural Networks for Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) is an imaging modality used to reconstruct the internal conductivity distribution of a domain via boundary voltage measurements. In this paper, we present a novel EIT approach for integrated sensing of composite structures utilizing Physics Informed Neural Networks (PINNs). Unlike traditional data-driven only models, PINNs incorporate underlying physical principles governing EIT directly into the learning process, enabling precise and rapid reconstructions. We demonstrate the effectiveness of PINNs with a variety of physical constraints for integrated sensing. The proposed approach has potential to enhance material characterization and condition monitoring, offering a robust alternative to classical EIT approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信