锂-硼酸钠中CO2捕获的最佳操作窗口:相变和组成效应

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiyi Zang,  and , Takuya Harada*, 
{"title":"锂-硼酸钠中CO2捕获的最佳操作窗口:相变和组成效应","authors":"Shiyi Zang,&nbsp; and ,&nbsp;Takuya Harada*,&nbsp;","doi":"10.1021/acssuschemeng.4c1028510.1021/acssuschemeng.4c10285","DOIUrl":null,"url":null,"abstract":"<p >Alkali metal borate molten salts have emerged as efficient high-temperature liquid CO<sub>2</sub> sorbents, advancing carbon reduction for energy-intensive industrial chemical processes. This work investigated the relationship between the liquidus behavior and CO<sub>2</sub> uptake characteristics of lithium–sodium borates, M<sub><i>x</i></sub>B<sub>1–<i>x</i></sub>O<sub>1.5–<i>x</i></sub> (M = Li<sub>0.5</sub>Na<sub>0.5</sub>), over a composition range of 0.50 ≤ <i>x</i> ≤ 0.80. Differential Scanning Calorimetry (DSC) measurements revealed detailed phase–transition profiles, with liquidus temperatures ranging from 500 to 650 °C. Composition-dependent liquidus behavior governs the CO<sub>2</sub> sorption characteristics during the early sorption stages, transitioning from “solid-to-liquid” in low-alkali to “liquid-to-liquid” in high-alkali regions. Optimal working capacities and reaction rates consistently correspond to the liquidus transition range, minimizing energy demands for preserving molten state in the cyclic CO<sub>2</sub> capture-release operations. These findings establish temperature–composition operating windows tailored to industrial needs, providing critical liquidus diagrams and demonstrating their potential as versatile sorbents for high-temperature CO<sub>2</sub> capture.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 12","pages":"4768–4777 4768–4777"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Operating Windows for CO2 Capture in Lithium–Sodium Borates: Phase Transition and Composition Effects\",\"authors\":\"Shiyi Zang,&nbsp; and ,&nbsp;Takuya Harada*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c1028510.1021/acssuschemeng.4c10285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alkali metal borate molten salts have emerged as efficient high-temperature liquid CO<sub>2</sub> sorbents, advancing carbon reduction for energy-intensive industrial chemical processes. This work investigated the relationship between the liquidus behavior and CO<sub>2</sub> uptake characteristics of lithium–sodium borates, M<sub><i>x</i></sub>B<sub>1–<i>x</i></sub>O<sub>1.5–<i>x</i></sub> (M = Li<sub>0.5</sub>Na<sub>0.5</sub>), over a composition range of 0.50 ≤ <i>x</i> ≤ 0.80. Differential Scanning Calorimetry (DSC) measurements revealed detailed phase–transition profiles, with liquidus temperatures ranging from 500 to 650 °C. Composition-dependent liquidus behavior governs the CO<sub>2</sub> sorption characteristics during the early sorption stages, transitioning from “solid-to-liquid” in low-alkali to “liquid-to-liquid” in high-alkali regions. Optimal working capacities and reaction rates consistently correspond to the liquidus transition range, minimizing energy demands for preserving molten state in the cyclic CO<sub>2</sub> capture-release operations. These findings establish temperature–composition operating windows tailored to industrial needs, providing critical liquidus diagrams and demonstrating their potential as versatile sorbents for high-temperature CO<sub>2</sub> capture.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 12\",\"pages\":\"4768–4777 4768–4777\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10285\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10285","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碱金属硼酸盐熔盐已经成为高效的高温液体CO2吸附剂,促进了能源密集型工业化学过程的碳减排。本文研究了硼酸锂钠MxB1-xO1.5-x (M = Li0.5Na0.5)在0.50≤x≤0.80的组成范围内液相行为与CO2吸收特性的关系。差示扫描量热法(DSC)测量显示了详细的相变曲线,液相温度范围为500至650°C。组分依赖的液相行为控制了CO2吸附早期阶段的特征,从低碱区“固-液”过渡到高碱区“液-液”。最佳工作能力和反应速率始终对应于液相转变范围,最大限度地减少了在循环CO2捕获-释放操作中保持熔融状态的能量需求。这些发现建立了适合工业需求的温度组成操作窗口,提供了关键的液相图,并展示了它们作为高温二氧化碳捕获的多功能吸附剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Operating Windows for CO2 Capture in Lithium–Sodium Borates: Phase Transition and Composition Effects

Optimal Operating Windows for CO2 Capture in Lithium–Sodium Borates: Phase Transition and Composition Effects

Alkali metal borate molten salts have emerged as efficient high-temperature liquid CO2 sorbents, advancing carbon reduction for energy-intensive industrial chemical processes. This work investigated the relationship between the liquidus behavior and CO2 uptake characteristics of lithium–sodium borates, MxB1–xO1.5–x (M = Li0.5Na0.5), over a composition range of 0.50 ≤ x ≤ 0.80. Differential Scanning Calorimetry (DSC) measurements revealed detailed phase–transition profiles, with liquidus temperatures ranging from 500 to 650 °C. Composition-dependent liquidus behavior governs the CO2 sorption characteristics during the early sorption stages, transitioning from “solid-to-liquid” in low-alkali to “liquid-to-liquid” in high-alkali regions. Optimal working capacities and reaction rates consistently correspond to the liquidus transition range, minimizing energy demands for preserving molten state in the cyclic CO2 capture-release operations. These findings establish temperature–composition operating windows tailored to industrial needs, providing critical liquidus diagrams and demonstrating their potential as versatile sorbents for high-temperature CO2 capture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信