MulAFNet:整合多个分子表征以增强属性预测

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lei Ci, Beilei Li, Jiahao Xu, Sihua Peng, Linhua Jiang and Wei Long*, 
{"title":"MulAFNet:整合多个分子表征以增强属性预测","authors":"Lei Ci,&nbsp;Beilei Li,&nbsp;Jiahao Xu,&nbsp;Sihua Peng,&nbsp;Linhua Jiang and Wei Long*,&nbsp;","doi":"10.1021/acsomega.4c0988410.1021/acsomega.4c09884","DOIUrl":null,"url":null,"abstract":"<p >In computer-aided drug design, molecular representation plays a crucial role. Most existing multimodal approaches primarily perform simple concatenation of various feature representations, without adequately emphasizing effective integration among these features. To address this issue, this study proposes a network framework that integrates multimodal representations using a multihead attention flow (MulAFNet). MulAFNet utilizes SMILES string representation and two levels of molecular graph representations: atom-level and functional group-level graph structure. Pretraining tasks are established for each of these three representations, which are then fused in downstream tasks to predict molecular properties. The experiments were conducted on six classification data sets and three regression data sets, demonstrating that the use of multiple molecular representations as input has a significant impact on the results. In particular, the excellent performance of our fusion method in molecular property prediction outperforms other state-of-the-art methods, proving its superiority. Additionally, comparative experiments on fusion methods and ablation studies, further validate the effectiveness of MulAFNet. The results demonstrate that multiple molecular feature representations provide a more comprehensive molecular understanding, and appropriate pretraining tasks enhance molecular property prediction.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 12","pages":"12043–12053 12043–12053"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09884","citationCount":"0","resultStr":"{\"title\":\"MulAFNet: Integrating Multiple Molecular Representations for Enhanced Property Prediction\",\"authors\":\"Lei Ci,&nbsp;Beilei Li,&nbsp;Jiahao Xu,&nbsp;Sihua Peng,&nbsp;Linhua Jiang and Wei Long*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0988410.1021/acsomega.4c09884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In computer-aided drug design, molecular representation plays a crucial role. Most existing multimodal approaches primarily perform simple concatenation of various feature representations, without adequately emphasizing effective integration among these features. To address this issue, this study proposes a network framework that integrates multimodal representations using a multihead attention flow (MulAFNet). MulAFNet utilizes SMILES string representation and two levels of molecular graph representations: atom-level and functional group-level graph structure. Pretraining tasks are established for each of these three representations, which are then fused in downstream tasks to predict molecular properties. The experiments were conducted on six classification data sets and three regression data sets, demonstrating that the use of multiple molecular representations as input has a significant impact on the results. In particular, the excellent performance of our fusion method in molecular property prediction outperforms other state-of-the-art methods, proving its superiority. Additionally, comparative experiments on fusion methods and ablation studies, further validate the effectiveness of MulAFNet. The results demonstrate that multiple molecular feature representations provide a more comprehensive molecular understanding, and appropriate pretraining tasks enhance molecular property prediction.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 12\",\"pages\":\"12043–12053 12043–12053\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09884\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c09884\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09884","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在计算机辅助药物设计中,分子表征起着至关重要的作用。大多数现有的多模态方法主要执行各种特征表示的简单连接,而没有充分强调这些特征之间的有效集成。为了解决这个问题,本研究提出了一个使用多头注意力流(MulAFNet)集成多模态表示的网络框架。MulAFNet利用SMILES字符串表示和两级分子图表示:原子级和功能群级图结构。为这三种表征中的每一种建立预训练任务,然后将其融合到下游任务中以预测分子特性。实验在6个分类数据集和3个回归数据集上进行,表明使用多个分子表征作为输入对结果有显著影响。特别是,我们的融合方法在分子性质预测方面的优异表现超过了其他最先进的方法,证明了它的优越性。此外,通过融合方法和消融研究的对比实验,进一步验证了MulAFNet的有效性。结果表明,多种分子特征表示提供了更全面的分子理解,适当的预训练任务增强了分子性质预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MulAFNet: Integrating Multiple Molecular Representations for Enhanced Property Prediction

In computer-aided drug design, molecular representation plays a crucial role. Most existing multimodal approaches primarily perform simple concatenation of various feature representations, without adequately emphasizing effective integration among these features. To address this issue, this study proposes a network framework that integrates multimodal representations using a multihead attention flow (MulAFNet). MulAFNet utilizes SMILES string representation and two levels of molecular graph representations: atom-level and functional group-level graph structure. Pretraining tasks are established for each of these three representations, which are then fused in downstream tasks to predict molecular properties. The experiments were conducted on six classification data sets and three regression data sets, demonstrating that the use of multiple molecular representations as input has a significant impact on the results. In particular, the excellent performance of our fusion method in molecular property prediction outperforms other state-of-the-art methods, proving its superiority. Additionally, comparative experiments on fusion methods and ablation studies, further validate the effectiveness of MulAFNet. The results demonstrate that multiple molecular feature representations provide a more comprehensive molecular understanding, and appropriate pretraining tasks enhance molecular property prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信