用于近红外 I 和近红外 II 生物窗口内肿瘤光声成像和光热疗法的金纳米粒子的形状和尺寸效应

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-31 DOI:10.1002/smll.202412296
Xiaodong Zeng, Lin Tang, Weijing Zhang, Xuechuan Hong, Yuling Xiao
{"title":"用于近红外 I 和近红外 II 生物窗口内肿瘤光声成像和光热疗法的金纳米粒子的形状和尺寸效应","authors":"Xiaodong Zeng, Lin Tang, Weijing Zhang, Xuechuan Hong, Yuling Xiao","doi":"10.1002/smll.202412296","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles (AuNPs) have emerged as promising tools in cancer theranostics, particularly in applications involving photoacoustic imaging (PAI) and photothermal therapy (PTT). The optical and thermal properties of AuNPs can be precisely tuned by adjusting their shape and size, which, in turn, influences their performance within the first (NIR-I) and second near-infrared (NIR-II) bio-windows. This study explores how variations in the morphology of AuNPs, such as nanorods and nanodumbbells, affect their longitudinal surface plasmon resonance peaks, penetration depth, heating efficiency, and photoacoustic performance. Special attention is given to the superior capabilities of PEGylated NIR-II AuNPs in deep tissue imaging, photothermal conversion efficiency, effective tumor ablation, and biocompatibility compared to their NIR-I counterparts. NIR-II AuNPs also demonstrate significantly enhanced photoacoustic intensity, making them highly promising for clinical PAI. These findings underscore the potential of NIR-II-optimized AuNPs as potent agents for cancer theranostics, providing valuable insights into how the shape and size of AuNPs influence the aspect ratio, thereby optimizing imaging precision and treatment efficacy across the NIR-I to NIR-II spectrum.","PeriodicalId":228,"journal":{"name":"Small","volume":"36 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape and Size Effects of Gold Nanoparticles for Tumor Photoacoustic Imaging and Photothermal Therapy Within the NIR-I and NIR-II Biowindows\",\"authors\":\"Xiaodong Zeng, Lin Tang, Weijing Zhang, Xuechuan Hong, Yuling Xiao\",\"doi\":\"10.1002/smll.202412296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanoparticles (AuNPs) have emerged as promising tools in cancer theranostics, particularly in applications involving photoacoustic imaging (PAI) and photothermal therapy (PTT). The optical and thermal properties of AuNPs can be precisely tuned by adjusting their shape and size, which, in turn, influences their performance within the first (NIR-I) and second near-infrared (NIR-II) bio-windows. This study explores how variations in the morphology of AuNPs, such as nanorods and nanodumbbells, affect their longitudinal surface plasmon resonance peaks, penetration depth, heating efficiency, and photoacoustic performance. Special attention is given to the superior capabilities of PEGylated NIR-II AuNPs in deep tissue imaging, photothermal conversion efficiency, effective tumor ablation, and biocompatibility compared to their NIR-I counterparts. NIR-II AuNPs also demonstrate significantly enhanced photoacoustic intensity, making them highly promising for clinical PAI. These findings underscore the potential of NIR-II-optimized AuNPs as potent agents for cancer theranostics, providing valuable insights into how the shape and size of AuNPs influence the aspect ratio, thereby optimizing imaging precision and treatment efficacy across the NIR-I to NIR-II spectrum.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202412296\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412296","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shape and Size Effects of Gold Nanoparticles for Tumor Photoacoustic Imaging and Photothermal Therapy Within the NIR-I and NIR-II Biowindows

Shape and Size Effects of Gold Nanoparticles for Tumor Photoacoustic Imaging and Photothermal Therapy Within the NIR-I and NIR-II Biowindows
Gold nanoparticles (AuNPs) have emerged as promising tools in cancer theranostics, particularly in applications involving photoacoustic imaging (PAI) and photothermal therapy (PTT). The optical and thermal properties of AuNPs can be precisely tuned by adjusting their shape and size, which, in turn, influences their performance within the first (NIR-I) and second near-infrared (NIR-II) bio-windows. This study explores how variations in the morphology of AuNPs, such as nanorods and nanodumbbells, affect their longitudinal surface plasmon resonance peaks, penetration depth, heating efficiency, and photoacoustic performance. Special attention is given to the superior capabilities of PEGylated NIR-II AuNPs in deep tissue imaging, photothermal conversion efficiency, effective tumor ablation, and biocompatibility compared to their NIR-I counterparts. NIR-II AuNPs also demonstrate significantly enhanced photoacoustic intensity, making them highly promising for clinical PAI. These findings underscore the potential of NIR-II-optimized AuNPs as potent agents for cancer theranostics, providing valuable insights into how the shape and size of AuNPs influence the aspect ratio, thereby optimizing imaging precision and treatment efficacy across the NIR-I to NIR-II spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信