Lu Zhang, Ming-Yi Sun, Xiang-Yu Li, Meng-Yuan Liu, Hong-Yu Chu, Chong-Chen Wang, Peng Wang, Xiao-Hong Yi, Yi Wang, Jiguang Deng
{"title":"双网气凝胶微球固定NH2-MIL-125萃取放射性废水中的铀","authors":"Lu Zhang, Ming-Yi Sun, Xiang-Yu Li, Meng-Yuan Liu, Hong-Yu Chu, Chong-Chen Wang, Peng Wang, Xiao-Hong Yi, Yi Wang, Jiguang Deng","doi":"10.1021/acssuschemeng.5c00543","DOIUrl":null,"url":null,"abstract":"An environmentally friendly adsorbent for recovering nuclear energy source U(VI) from wastewater plays a crucial role in resource recovery and environmental preservation. In this work, a double-network aerogel adsorbent composite constructed from sodium alginate, poly(acrylic acid), and NH<sub>2</sub>-MIL-125 (NM@SA) was fabricated by a mild method, which was adopted to remove and concentrate U(VI) in the corresponding simulated wastewater samples. According to the results of adsorption kinetic and isotherm models, the adsorption of U(VI) on NM@SA was a monolayer chemisorption process. The maximum adsorption capacity of NM@SA for U(VI) calculated from the Langmuir model was 703.6 mg·g<sup>–1</sup>. In addition, the adsorbent maintained excellent adsorption capacity, recoverability, and reuse in large-scale operation. The same abilities can be demonstrated in real seawater environments. Finally, the potential adsorption mechanisms of U(VI) on NM@SA were discussed in conjunction with the experimental determination and characterization results. Overall, this study introduces an advantageous research approach for treating U(VI)-containing radioactive wastewater.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"40 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uranium Extraction from Radioactive Wastewater by NH2-MIL-125 Immobilized in a Double-Network Aerogel Microsphere\",\"authors\":\"Lu Zhang, Ming-Yi Sun, Xiang-Yu Li, Meng-Yuan Liu, Hong-Yu Chu, Chong-Chen Wang, Peng Wang, Xiao-Hong Yi, Yi Wang, Jiguang Deng\",\"doi\":\"10.1021/acssuschemeng.5c00543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An environmentally friendly adsorbent for recovering nuclear energy source U(VI) from wastewater plays a crucial role in resource recovery and environmental preservation. In this work, a double-network aerogel adsorbent composite constructed from sodium alginate, poly(acrylic acid), and NH<sub>2</sub>-MIL-125 (NM@SA) was fabricated by a mild method, which was adopted to remove and concentrate U(VI) in the corresponding simulated wastewater samples. According to the results of adsorption kinetic and isotherm models, the adsorption of U(VI) on NM@SA was a monolayer chemisorption process. The maximum adsorption capacity of NM@SA for U(VI) calculated from the Langmuir model was 703.6 mg·g<sup>–1</sup>. In addition, the adsorbent maintained excellent adsorption capacity, recoverability, and reuse in large-scale operation. The same abilities can be demonstrated in real seawater environments. Finally, the potential adsorption mechanisms of U(VI) on NM@SA were discussed in conjunction with the experimental determination and characterization results. Overall, this study introduces an advantageous research approach for treating U(VI)-containing radioactive wastewater.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c00543\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c00543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Uranium Extraction from Radioactive Wastewater by NH2-MIL-125 Immobilized in a Double-Network Aerogel Microsphere
An environmentally friendly adsorbent for recovering nuclear energy source U(VI) from wastewater plays a crucial role in resource recovery and environmental preservation. In this work, a double-network aerogel adsorbent composite constructed from sodium alginate, poly(acrylic acid), and NH2-MIL-125 (NM@SA) was fabricated by a mild method, which was adopted to remove and concentrate U(VI) in the corresponding simulated wastewater samples. According to the results of adsorption kinetic and isotherm models, the adsorption of U(VI) on NM@SA was a monolayer chemisorption process. The maximum adsorption capacity of NM@SA for U(VI) calculated from the Langmuir model was 703.6 mg·g–1. In addition, the adsorbent maintained excellent adsorption capacity, recoverability, and reuse in large-scale operation. The same abilities can be demonstrated in real seawater environments. Finally, the potential adsorption mechanisms of U(VI) on NM@SA were discussed in conjunction with the experimental determination and characterization results. Overall, this study introduces an advantageous research approach for treating U(VI)-containing radioactive wastewater.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.