求解非线性空间分数阶后向扩散问题的拟边值方法

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Xiaoli Feng, Xiaoyu Yuan, Yun Zhang
{"title":"求解非线性空间分数阶后向扩散问题的拟边值方法","authors":"Xiaoli Feng,&nbsp;Xiaoyu Yuan,&nbsp;Yun Zhang","doi":"10.1007/s10444-025-10230-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we adopt a quasi-boundary-value method to solve the nonlinear space-fractional backward problem with perturbed both final value and variable diffusion coefficient in general dimensional space, which is a severely ill-posed problem. The existence, uniqueness and stability of the solution for the quasi-boundary-value problem are proved. Convergence estimates are presented under an <i>a-priori</i> bound assumption of the exact solution. Finally, several numerical examples are given by the finite difference scheme and the fixed-point iteration method to show the effectiveness of the theoretical results.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quasi-boundary-value method for solving a nonlinear space-fractional backward diffusion problem\",\"authors\":\"Xiaoli Feng,&nbsp;Xiaoyu Yuan,&nbsp;Yun Zhang\",\"doi\":\"10.1007/s10444-025-10230-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we adopt a quasi-boundary-value method to solve the nonlinear space-fractional backward problem with perturbed both final value and variable diffusion coefficient in general dimensional space, which is a severely ill-posed problem. The existence, uniqueness and stability of the solution for the quasi-boundary-value problem are proved. Convergence estimates are presented under an <i>a-priori</i> bound assumption of the exact solution. Finally, several numerical examples are given by the finite difference scheme and the fixed-point iteration method to show the effectiveness of the theoretical results.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10230-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10230-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文采用拟边值法解决了广义空间中具有终值摄动和扩散系数变的非线性空间分数阶后向问题,这是一个严重不适定问题。证明了拟边值问题解的存在唯一性和稳定性。在精确解的先验界假设下给出了收敛估计。最后,通过有限差分格式和不动点迭代法的数值算例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quasi-boundary-value method for solving a nonlinear space-fractional backward diffusion problem

In this paper, we adopt a quasi-boundary-value method to solve the nonlinear space-fractional backward problem with perturbed both final value and variable diffusion coefficient in general dimensional space, which is a severely ill-posed problem. The existence, uniqueness and stability of the solution for the quasi-boundary-value problem are proved. Convergence estimates are presented under an a-priori bound assumption of the exact solution. Finally, several numerical examples are given by the finite difference scheme and the fixed-point iteration method to show the effectiveness of the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信