Cu-Ag双金属纳米颗粒水溶胶的合成及其对脱硫弧菌生物膜微生物腐蚀的控制

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Changpeng Li, Zheng Cai, Boxin Wei, Long Qu, Mengdi Yan, Zishuai Zhou, Bei Liu, Jin Xu, Cheng Sun, Yujia Wang, Tingyue Gu, Fuhui Wang, Dake Xu
{"title":"Cu-Ag双金属纳米颗粒水溶胶的合成及其对脱硫弧菌生物膜微生物腐蚀的控制","authors":"Changpeng Li,&nbsp;Zheng Cai,&nbsp;Boxin Wei,&nbsp;Long Qu,&nbsp;Mengdi Yan,&nbsp;Zishuai Zhou,&nbsp;Bei Liu,&nbsp;Jin Xu,&nbsp;Cheng Sun,&nbsp;Yujia Wang,&nbsp;Tingyue Gu,&nbsp;Fuhui Wang,&nbsp;Dake Xu","doi":"10.1002/adfm.202500354","DOIUrl":null,"url":null,"abstract":"<p>Microbiologically influenced corrosion (MIC) of engineering structures poses significant safety risks, particularly in environments where sulfate-reducing bacteria (SRB) are prevalent. In this study, a highly stable hydrosol with strong antibacterial properties is developed by adsorbing hydrophilic groups of polymer chains onto the Cu-Ag bimetallic nanoparticles (BNPs). The synergistic effects of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) overcame the incompatibility between the polymer components and nanomaterials, enhancing the dispersion and stability of the Cu-Ag BNP hydrosol. The results demonstrates that the hydrosol exhibited potent antibacterial activities at 50 ppm (w/w), achieving approximately a 5-log reduction for sessile cells after 21 days using retrieved coupons from 3-day pre-culture vials. The hydrosol led to much cleaner X80 coupon surfaces due to biofilm inhibition and MIC mitigation. The weight loss measurements reveals corrosion inhibition efficiencies of 91% and 78% at 50 ppm and 25 ppm, respectively. Additionally, the density functional theory (DFT) modeling reveals that copper regulates silver ion release, enhancing the antibacterial action. While the Cu-Ag BNP hydrosol shows great potential, challenges still exist in scaling its applications, especially in marine and other harsh environmental settings. This research provides a promising platform for developing sustainable bacterial control strategies, suppressing SRB growth.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 35","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm\",\"authors\":\"Changpeng Li,&nbsp;Zheng Cai,&nbsp;Boxin Wei,&nbsp;Long Qu,&nbsp;Mengdi Yan,&nbsp;Zishuai Zhou,&nbsp;Bei Liu,&nbsp;Jin Xu,&nbsp;Cheng Sun,&nbsp;Yujia Wang,&nbsp;Tingyue Gu,&nbsp;Fuhui Wang,&nbsp;Dake Xu\",\"doi\":\"10.1002/adfm.202500354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbiologically influenced corrosion (MIC) of engineering structures poses significant safety risks, particularly in environments where sulfate-reducing bacteria (SRB) are prevalent. In this study, a highly stable hydrosol with strong antibacterial properties is developed by adsorbing hydrophilic groups of polymer chains onto the Cu-Ag bimetallic nanoparticles (BNPs). The synergistic effects of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) overcame the incompatibility between the polymer components and nanomaterials, enhancing the dispersion and stability of the Cu-Ag BNP hydrosol. The results demonstrates that the hydrosol exhibited potent antibacterial activities at 50 ppm (w/w), achieving approximately a 5-log reduction for sessile cells after 21 days using retrieved coupons from 3-day pre-culture vials. The hydrosol led to much cleaner X80 coupon surfaces due to biofilm inhibition and MIC mitigation. The weight loss measurements reveals corrosion inhibition efficiencies of 91% and 78% at 50 ppm and 25 ppm, respectively. Additionally, the density functional theory (DFT) modeling reveals that copper regulates silver ion release, enhancing the antibacterial action. While the Cu-Ag BNP hydrosol shows great potential, challenges still exist in scaling its applications, especially in marine and other harsh environmental settings. This research provides a promising platform for developing sustainable bacterial control strategies, suppressing SRB growth.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 35\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500354\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工程结构的微生物影响腐蚀(MIC)带来了重大的安全风险,特别是在硫酸盐还原菌(SRB)普遍存在的环境中。在本研究中,通过将聚合物链的亲水基团吸附到Cu-Ag双金属纳米颗粒(BNPs)上,开发了一种具有强抗菌性能的高稳定性纯溶胶。聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)的协同作用克服了聚合物组分与纳米材料之间的不相容性,增强了Cu-Ag BNP纯溶胶的分散性和稳定性。结果表明,纯露在50 ppm (w/w)时表现出有效的抗菌活性,在使用3天预培养瓶中提取的样品21天后,对无根细胞的抗菌活性降低了约5倍。由于生物膜抑制和MIC缓解,纯溶胶使X80复合材料表面更加清洁。减重测量结果显示,在50 ppm和25 ppm条件下,缓蚀效率分别为91%和78%。此外,密度泛函理论(DFT)模型表明,铜可以调节银离子的释放,增强抗菌作用。虽然Cu-Ag BNP纯溶胶显示出巨大的潜力,但在扩展其应用方面仍然存在挑战,特别是在海洋和其他恶劣环境环境中。该研究为开发可持续的细菌控制策略,抑制SRB生长提供了一个有希望的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm

Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm

Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm

Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm

Synthesis of Cu-Ag Bimetallic Nanoparticle Hydrosols and Their Superior Antibacterial Performances for Control of Microbial Corrosion by Desulfovibrio Desulfuricans Biofilm

Microbiologically influenced corrosion (MIC) of engineering structures poses significant safety risks, particularly in environments where sulfate-reducing bacteria (SRB) are prevalent. In this study, a highly stable hydrosol with strong antibacterial properties is developed by adsorbing hydrophilic groups of polymer chains onto the Cu-Ag bimetallic nanoparticles (BNPs). The synergistic effects of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) overcame the incompatibility between the polymer components and nanomaterials, enhancing the dispersion and stability of the Cu-Ag BNP hydrosol. The results demonstrates that the hydrosol exhibited potent antibacterial activities at 50 ppm (w/w), achieving approximately a 5-log reduction for sessile cells after 21 days using retrieved coupons from 3-day pre-culture vials. The hydrosol led to much cleaner X80 coupon surfaces due to biofilm inhibition and MIC mitigation. The weight loss measurements reveals corrosion inhibition efficiencies of 91% and 78% at 50 ppm and 25 ppm, respectively. Additionally, the density functional theory (DFT) modeling reveals that copper regulates silver ion release, enhancing the antibacterial action. While the Cu-Ag BNP hydrosol shows great potential, challenges still exist in scaling its applications, especially in marine and other harsh environmental settings. This research provides a promising platform for developing sustainable bacterial control strategies, suppressing SRB growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信