{"title":"大功率钠离子电池高钠空位浓度亚稳p3型层状负极的设计","authors":"Alok K. Pandey, Benoît D.L. Campéon, Saad Zafar, Toru Ishigaki, Tsubasa Koyama, Masanobu Nakayama, Naoaki Yabuuchi","doi":"10.1002/adfm.202417830","DOIUrl":null,"url":null,"abstract":"<p>Titanium-based layered oxides exhibit promising characteristics for negative electrode applications for sodium-ion batteries (SIBs) owing to their low operating potential and stable redox behavior. However, challenges persist in synthesizing single-phase Na<i><sub>x</sub></i>Cr<i><sub>x</sub></i>Ti<sub>1–</sub><i><sub>x</sub></i>O<sub>2</sub> materials with reduced sodium content (<i>x</i> < 0.58) due to structural instability. In this study, an unconventional approach utilizing potassium analogues to design high Na vacancy concentration compounds is proposed. By exploiting the larger ionic size of K<sup>+</sup> ions, a P3-type K<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> layered material with lower alkali ion concentrations (<i>x</i> = 0.50) is stabilized. Subsequently, through a facile room-temperature K<sup>+</sup>/Na<sup>+</sup> ion-exchange process, sodium-deficient metastable P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> is successfully synthesized. A similar K<sup>+</sup>/Li<sup>+</sup> ion-exchange process is also applied to synthesize O3-type Li<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub>. X-ray diffraction combined with electron microscopy reveals the formation of metastable single-phase P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> and metastable O3-type Li<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> with a unique layer arrangement. The high Na vacancy concentration in P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> results in an increased initial capacity of 125 mA h g<sup>−1</sup> at 10 mA g<sup>−1</sup>. Additionally, Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> exhibits Na<sup>+</sup>/vacancy disordering and high electronic conductivity, enabling a high-rate charge capability without sodium plating. This work provides new insights into the design of metastable layered materials for durable and safe sodium battery applications with fast-charge capability.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202417830","citationCount":"0","resultStr":"{\"title\":\"Designing Metastable P3-type Layered Negative Electrodes with High Na Vacancy Concentration for High-Power Sodium-Ion Batteries\",\"authors\":\"Alok K. Pandey, Benoît D.L. Campéon, Saad Zafar, Toru Ishigaki, Tsubasa Koyama, Masanobu Nakayama, Naoaki Yabuuchi\",\"doi\":\"10.1002/adfm.202417830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Titanium-based layered oxides exhibit promising characteristics for negative electrode applications for sodium-ion batteries (SIBs) owing to their low operating potential and stable redox behavior. However, challenges persist in synthesizing single-phase Na<i><sub>x</sub></i>Cr<i><sub>x</sub></i>Ti<sub>1–</sub><i><sub>x</sub></i>O<sub>2</sub> materials with reduced sodium content (<i>x</i> < 0.58) due to structural instability. In this study, an unconventional approach utilizing potassium analogues to design high Na vacancy concentration compounds is proposed. By exploiting the larger ionic size of K<sup>+</sup> ions, a P3-type K<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> layered material with lower alkali ion concentrations (<i>x</i> = 0.50) is stabilized. Subsequently, through a facile room-temperature K<sup>+</sup>/Na<sup>+</sup> ion-exchange process, sodium-deficient metastable P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> is successfully synthesized. A similar K<sup>+</sup>/Li<sup>+</sup> ion-exchange process is also applied to synthesize O3-type Li<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub>. X-ray diffraction combined with electron microscopy reveals the formation of metastable single-phase P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> and metastable O3-type Li<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> with a unique layer arrangement. The high Na vacancy concentration in P3-type Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> results in an increased initial capacity of 125 mA h g<sup>−1</sup> at 10 mA g<sup>−1</sup>. Additionally, Na<sub>0.5</sub>Cr<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>2</sub> exhibits Na<sup>+</sup>/vacancy disordering and high electronic conductivity, enabling a high-rate charge capability without sodium plating. This work provides new insights into the design of metastable layered materials for durable and safe sodium battery applications with fast-charge capability.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 23\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202417830\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202417830\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202417830","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钛基层状氧化物由于其低工作电位和稳定的氧化还原行为,在钠离子电池负极应用中表现出很好的特性。然而,在合成钠含量降低的单相NaxCrxTi1-xO2材料(x <;0.58),因为结构不稳定。在这项研究中,提出了一种利用钾类似物设计高钠空位浓度化合物的非常规方法。利用K+离子较大的离子尺寸,稳定了碱离子浓度(x = 0.50)较低的p3型K0.5Cr0.5Ti0.5O2层状材料。随后,通过简单的室温K+/Na+离子交换工艺,成功合成了缺钠亚稳态p3型Na0.5Cr0.5Ti0.5O2。采用类似的K+/Li+离子交换工艺合成了o3型Li0.5Cr0.5Ti0.5O2。x射线衍射结合电镜观察发现,形成了亚稳的单相p3型Na0.5Cr0.5Ti0.5O2和亚稳的o3型Li0.5Cr0.5Ti0.5O2,并具有独特的层状排列。p3型Na0.5Cr0.5Ti0.5O2中Na空位浓度高,在10 mA g−1时初始容量增加125 mA h g−1。此外,Na0.5Cr0.5Ti0.5O2表现出Na+/空位无序性和高电子导电性,使其具有无需镀钠的高速率充电能力。这项工作为亚稳态层状材料的设计提供了新的见解,用于具有快速充电能力的耐用和安全的钠电池应用。
Designing Metastable P3-type Layered Negative Electrodes with High Na Vacancy Concentration for High-Power Sodium-Ion Batteries
Titanium-based layered oxides exhibit promising characteristics for negative electrode applications for sodium-ion batteries (SIBs) owing to their low operating potential and stable redox behavior. However, challenges persist in synthesizing single-phase NaxCrxTi1–xO2 materials with reduced sodium content (x < 0.58) due to structural instability. In this study, an unconventional approach utilizing potassium analogues to design high Na vacancy concentration compounds is proposed. By exploiting the larger ionic size of K+ ions, a P3-type K0.5Cr0.5Ti0.5O2 layered material with lower alkali ion concentrations (x = 0.50) is stabilized. Subsequently, through a facile room-temperature K+/Na+ ion-exchange process, sodium-deficient metastable P3-type Na0.5Cr0.5Ti0.5O2 is successfully synthesized. A similar K+/Li+ ion-exchange process is also applied to synthesize O3-type Li0.5Cr0.5Ti0.5O2. X-ray diffraction combined with electron microscopy reveals the formation of metastable single-phase P3-type Na0.5Cr0.5Ti0.5O2 and metastable O3-type Li0.5Cr0.5Ti0.5O2 with a unique layer arrangement. The high Na vacancy concentration in P3-type Na0.5Cr0.5Ti0.5O2 results in an increased initial capacity of 125 mA h g−1 at 10 mA g−1. Additionally, Na0.5Cr0.5Ti0.5O2 exhibits Na+/vacancy disordering and high electronic conductivity, enabling a high-rate charge capability without sodium plating. This work provides new insights into the design of metastable layered materials for durable and safe sodium battery applications with fast-charge capability.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.