基于机器学习的稳定Ag-Pd-F甲酸氧化反应催化剂的高通量筛选

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fanzhe Ma, Fuyi Chen, Peng Xu, Xiaoqing Liu and Wanxuan Zhang
{"title":"基于机器学习的稳定Ag-Pd-F甲酸氧化反应催化剂的高通量筛选","authors":"Fanzhe Ma, Fuyi Chen, Peng Xu, Xiaoqing Liu and Wanxuan Zhang","doi":"10.1039/D4TA07674E","DOIUrl":null,"url":null,"abstract":"<p >The Ag–Pd–F materials demonstrates excellent catalytic performance as formate oxidation reaction (FOR) catalysts in direct formate fuel cells (DFFCs). The development of efficient FOR catalysts has been hindered by the lack of a systematic approach to catalyst design. Traditional methods, which rely on experimental trial-and-error and computationally intensive density functional theory (DFT) calculations, are not only costly but also time-consuming. The two crystal graph convolutional neural networks (CGCNN-1 and CGCNN-2 models) were developed utilizing the formation energy and convex hull distance as targets, respectively, to predict the novel Ag–Pd–F catalytic materials in this study. From an initial set of 20 130 alternative Ag–Pd–F structures, the CGCNN-1 and CGCNN-2 models identified 728 and 259 potentially stable Ag–Pd–F materials with the predicted convex hull distance less than zero. 149 metastable Ag–Pd–F candidate materials with the calculated convex hull distances less than 100 meV per atom and 8 novel low-energy stable Ag–Pd–F compounds with the calculated convex hull distances less than zero were validated using DFT calculations. The validated novel low-energy stable compounds include Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small>, AgPd<small><sub>2</sub></small>F<small><sub>12</sub></small>_CaCr<small><sub>2</sub></small>F<small><sub>12</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Sm<small><sub>2</sub></small>WO<small><sub>6</sub></small>, AgPd<small><sub>2</sub></small>F<small><sub>6</sub></small>_Ca<small><sub>2</sub></small>H<small><sub>6</sub></small>Os, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Ni(IO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Ag<small><sub>3</sub></small>PdF<small><sub>20</sub></small>_BiSb<small><sub>3</sub></small>F<small><sub>20</sub></small> and AgPd<small><sub>3</sub></small>F<small><sub>20</sub></small>_BiSb<small><sub>3</sub></small>F<small><sub>20</sub></small>. Among these compounds, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small> and Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Ni(IO<small><sub>3</sub></small>)<small><sub>2</sub></small>, with convex hull distances of −20.42, −19.78, and −17.44 meV per atom, respectively, also exhibit dynamic stability. Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small> (100) and Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small> (100) facets demonstrated all downhill pathways in free energy diagram for the FOR, indicating that these two facets can thermodynamically catalyze the spontaneous oxidation of HCOO<small><sup>−</sup></small> to CO<small><sub>2</sub></small> and H<small><sup>+</sup></small>. These findings provide valuable insights for designing new catalysts for FOR in DFFCs and demonstrate the effectiveness of input selection in machine learning models for materials discovery.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 17","pages":" 12553-12565"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput screening of stable Ag–Pd–F catalysts for formate oxidation reaction using machine learning†\",\"authors\":\"Fanzhe Ma, Fuyi Chen, Peng Xu, Xiaoqing Liu and Wanxuan Zhang\",\"doi\":\"10.1039/D4TA07674E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Ag–Pd–F materials demonstrates excellent catalytic performance as formate oxidation reaction (FOR) catalysts in direct formate fuel cells (DFFCs). The development of efficient FOR catalysts has been hindered by the lack of a systematic approach to catalyst design. Traditional methods, which rely on experimental trial-and-error and computationally intensive density functional theory (DFT) calculations, are not only costly but also time-consuming. The two crystal graph convolutional neural networks (CGCNN-1 and CGCNN-2 models) were developed utilizing the formation energy and convex hull distance as targets, respectively, to predict the novel Ag–Pd–F catalytic materials in this study. From an initial set of 20 130 alternative Ag–Pd–F structures, the CGCNN-1 and CGCNN-2 models identified 728 and 259 potentially stable Ag–Pd–F materials with the predicted convex hull distance less than zero. 149 metastable Ag–Pd–F candidate materials with the calculated convex hull distances less than 100 meV per atom and 8 novel low-energy stable Ag–Pd–F compounds with the calculated convex hull distances less than zero were validated using DFT calculations. The validated novel low-energy stable compounds include Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small>, AgPd<small><sub>2</sub></small>F<small><sub>12</sub></small>_CaCr<small><sub>2</sub></small>F<small><sub>12</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Sm<small><sub>2</sub></small>WO<small><sub>6</sub></small>, AgPd<small><sub>2</sub></small>F<small><sub>6</sub></small>_Ca<small><sub>2</sub></small>H<small><sub>6</sub></small>Os, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Ni(IO<small><sub>3</sub></small>)<small><sub>2</sub></small>, Ag<small><sub>3</sub></small>PdF<small><sub>20</sub></small>_BiSb<small><sub>3</sub></small>F<small><sub>20</sub></small> and AgPd<small><sub>3</sub></small>F<small><sub>20</sub></small>_BiSb<small><sub>3</sub></small>F<small><sub>20</sub></small>. Among these compounds, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small>, Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small> and Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Ni(IO<small><sub>3</sub></small>)<small><sub>2</sub></small>, with convex hull distances of −20.42, −19.78, and −17.44 meV per atom, respectively, also exhibit dynamic stability. Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_La<small><sub>2</sub></small>WO<small><sub>6</sub></small> (100) and Ag<small><sub>2</sub></small>PdF<small><sub>6</sub></small>_Na<small><sub>2</sub></small>PdF<small><sub>6</sub></small> (100) facets demonstrated all downhill pathways in free energy diagram for the FOR, indicating that these two facets can thermodynamically catalyze the spontaneous oxidation of HCOO<small><sup>−</sup></small> to CO<small><sub>2</sub></small> and H<small><sup>+</sup></small>. These findings provide valuable insights for designing new catalysts for FOR in DFFCs and demonstrate the effectiveness of input selection in machine learning models for materials discovery.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 17\",\"pages\":\" 12553-12565\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07674e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07674e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Ag-Pd-F材料在直接甲酸燃料电池(DFFCs)中作为甲酸氧化反应(FOR)催化剂表现出优异的催化性能。由于缺乏系统的催化剂设计方法,阻碍了高效FOR催化剂的发展。传统的方法依赖于实验试错和计算密集的密度泛函理论(DFT)计算,不仅成本高而且耗时长。本研究分别以形成能和凸包距离为目标,建立了两个晶体图卷积神经网络(CGCNN-1和CGCNN-2模型)来预测新型Ag-Pd-F催化材料。CGCNN-1和CGCNN-2模型从最初的20130种不同的Ag-Pd-F结构中,确定了728种和259种可能稳定的Ag-Pd-F材料,预测的凸包距离小于零。利用DFT计算验证了149种计算出的凸壳距离小于100 meV /原子的亚稳Ag-Pd-F候选材料和8种计算出的凸壳距离小于零的新型低能稳定Ag-Pd-F化合物。经验证的新型低能稳定化合物包括Ag2PdF6_La2WO6、Ag2PdF6_Na2PdF6、AgPd2F12_CaCr2F12、Ag2PdF6_Sm2WO6、AgPd2F6_Ca2H6Os、Ag2PdF6_Ni(IO3)2、Ag3PdF20_BiSb3F20和AgPd3F20_BiSb3F20。在这些化合物中,Ag2PdF6_La2WO6、Ag2PdF6_Na2PdF6和Ag2PdF6_Ni(IO3)2的凸包距离分别为- 20.42、- 19.78和- 17.44 meV /原子,也表现出动态稳定性。Ag2PdF6_La2WO6(100)和Ag2PdF6_Na2PdF6(100)面在for的自由能图上均表现为下坡路径,说明这两个面可以热力学催化HCOO−自发氧化为CO2和H+。这些发现为在DFFCs中设计新的for催化剂提供了有价值的见解,并证明了在材料发现的机器学习模型中输入选择的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput screening of stable Ag–Pd–F catalysts for formate oxidation reaction using machine learning†

High-throughput screening of stable Ag–Pd–F catalysts for formate oxidation reaction using machine learning†

High-throughput screening of stable Ag–Pd–F catalysts for formate oxidation reaction using machine learning†

The Ag–Pd–F materials demonstrates excellent catalytic performance as formate oxidation reaction (FOR) catalysts in direct formate fuel cells (DFFCs). The development of efficient FOR catalysts has been hindered by the lack of a systematic approach to catalyst design. Traditional methods, which rely on experimental trial-and-error and computationally intensive density functional theory (DFT) calculations, are not only costly but also time-consuming. The two crystal graph convolutional neural networks (CGCNN-1 and CGCNN-2 models) were developed utilizing the formation energy and convex hull distance as targets, respectively, to predict the novel Ag–Pd–F catalytic materials in this study. From an initial set of 20 130 alternative Ag–Pd–F structures, the CGCNN-1 and CGCNN-2 models identified 728 and 259 potentially stable Ag–Pd–F materials with the predicted convex hull distance less than zero. 149 metastable Ag–Pd–F candidate materials with the calculated convex hull distances less than 100 meV per atom and 8 novel low-energy stable Ag–Pd–F compounds with the calculated convex hull distances less than zero were validated using DFT calculations. The validated novel low-energy stable compounds include Ag2PdF6_La2WO6, Ag2PdF6_Na2PdF6, AgPd2F12_CaCr2F12, Ag2PdF6_Sm2WO6, AgPd2F6_Ca2H6Os, Ag2PdF6_Ni(IO3)2, Ag3PdF20_BiSb3F20 and AgPd3F20_BiSb3F20. Among these compounds, Ag2PdF6_La2WO6, Ag2PdF6_Na2PdF6 and Ag2PdF6_Ni(IO3)2, with convex hull distances of −20.42, −19.78, and −17.44 meV per atom, respectively, also exhibit dynamic stability. Ag2PdF6_La2WO6 (100) and Ag2PdF6_Na2PdF6 (100) facets demonstrated all downhill pathways in free energy diagram for the FOR, indicating that these two facets can thermodynamically catalyze the spontaneous oxidation of HCOO to CO2 and H+. These findings provide valuable insights for designing new catalysts for FOR in DFFCs and demonstrate the effectiveness of input selection in machine learning models for materials discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信