层状室温金属交替磁体候选材料中的晶体对称配对自旋谷锁定

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fayuan Zhang, Xingkai Cheng, Zhouyi Yin, Changchao Liu, Liwei Deng, Yuxi Qiao, Zheng Shi, Shuxuan Zhang, Junhao Lin, Zhengtai Liu, Mao Ye, Yaobo Huang, Xiangyu Meng, Cheng Zhang, Taichi Okuda, Kenya Shimada, Shengtao Cui, Yue Zhao, Guang-Han Cao, Shan Qiao, Junwei Liu, Chaoyu Chen
{"title":"层状室温金属交替磁体候选材料中的晶体对称配对自旋谷锁定","authors":"Fayuan Zhang, Xingkai Cheng, Zhouyi Yin, Changchao Liu, Liwei Deng, Yuxi Qiao, Zheng Shi, Shuxuan Zhang, Junhao Lin, Zhengtai Liu, Mao Ye, Yaobo Huang, Xiangyu Meng, Cheng Zhang, Taichi Okuda, Kenya Shimada, Shengtao Cui, Yue Zhao, Guang-Han Cao, Shan Qiao, Junwei Liu, Chaoyu Chen","doi":"10.1038/s41567-025-02864-2","DOIUrl":null,"url":null,"abstract":"<p>Previous theoretical efforts have predicted a type of unconventional antiferromagnet characterized by a crystal symmetry that connects antiferromagnetic sublattices in real space and simultaneously couples spin and momentum in reciprocal space. This results in a unique crystal-symmetry-paired spin–valley locking and related properties including piezomagnetism and non-collinear spin current even without spin–orbit coupling. However, most known unconventional antiferromagnets do not meet the necessary symmetry requirements for non-relativistic spin current, and this limits applications in spintronic devices. Here we demonstrate crystal-symmetry-paired spin–valley locking in a layered room-temperature antiferromagnetic compound, Rb<sub>1−<i>δ</i></sub>V<sub>2</sub>Te<sub>2</sub>O. Spin-resolved photoemission measurements directly show the opposite spin splitting between crystal-symmetry-paired valleys. Quasi-particle interference patterns show the suppression of intervalley scattering due to the spin selection rules that are a direct consequence of the spin–valley locking. These results suggest that Rb<sub>1−<i>δ</i></sub>V<sub>2</sub>Te<sub>2</sub>O is a potential room-temperature altermagnet candidate. Our observations highlight a methodology that enables both the advantages of layered materials and possible control through crystal symmetry manipulation for advancements in magnetism, electronics and information technology.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"183 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate\",\"authors\":\"Fayuan Zhang, Xingkai Cheng, Zhouyi Yin, Changchao Liu, Liwei Deng, Yuxi Qiao, Zheng Shi, Shuxuan Zhang, Junhao Lin, Zhengtai Liu, Mao Ye, Yaobo Huang, Xiangyu Meng, Cheng Zhang, Taichi Okuda, Kenya Shimada, Shengtao Cui, Yue Zhao, Guang-Han Cao, Shan Qiao, Junwei Liu, Chaoyu Chen\",\"doi\":\"10.1038/s41567-025-02864-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous theoretical efforts have predicted a type of unconventional antiferromagnet characterized by a crystal symmetry that connects antiferromagnetic sublattices in real space and simultaneously couples spin and momentum in reciprocal space. This results in a unique crystal-symmetry-paired spin–valley locking and related properties including piezomagnetism and non-collinear spin current even without spin–orbit coupling. However, most known unconventional antiferromagnets do not meet the necessary symmetry requirements for non-relativistic spin current, and this limits applications in spintronic devices. Here we demonstrate crystal-symmetry-paired spin–valley locking in a layered room-temperature antiferromagnetic compound, Rb<sub>1−<i>δ</i></sub>V<sub>2</sub>Te<sub>2</sub>O. Spin-resolved photoemission measurements directly show the opposite spin splitting between crystal-symmetry-paired valleys. Quasi-particle interference patterns show the suppression of intervalley scattering due to the spin selection rules that are a direct consequence of the spin–valley locking. These results suggest that Rb<sub>1−<i>δ</i></sub>V<sub>2</sub>Te<sub>2</sub>O is a potential room-temperature altermagnet candidate. Our observations highlight a methodology that enables both the advantages of layered materials and possible control through crystal symmetry manipulation for advancements in magnetism, electronics and information technology.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02864-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02864-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先前的理论工作预测了一种非常规的反铁磁体,其特征是晶体对称,它连接了真实空间中的反铁磁亚晶格,同时在互反空间中耦合自旋和动量。这导致了独特的晶体对称配对自旋谷锁定和相关特性,包括压磁性和非共线自旋电流,即使没有自旋轨道耦合。然而,大多数已知的非常规反铁磁体不满足非相对论性自旋电流的必要对称性要求,这限制了自旋电子器件的应用。在这里,我们证明了在层状室温反铁磁化合物Rb1−δV2Te2O中晶体对称配对自旋谷锁定。自旋分辨光发射测量直接显示了晶体对称配对谷之间相反的自旋分裂。由于自旋选择规则是自旋谷锁定的直接结果,准粒子干涉图显示了谷间散射的抑制。这些结果表明,Rb1−δV2Te2O是一种潜在的室温交替磁体候选材料。我们的观察强调了一种方法,该方法既可以实现分层材料的优势,也可以通过晶体对称操纵来控制磁性,电子和信息技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate

Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate

Previous theoretical efforts have predicted a type of unconventional antiferromagnet characterized by a crystal symmetry that connects antiferromagnetic sublattices in real space and simultaneously couples spin and momentum in reciprocal space. This results in a unique crystal-symmetry-paired spin–valley locking and related properties including piezomagnetism and non-collinear spin current even without spin–orbit coupling. However, most known unconventional antiferromagnets do not meet the necessary symmetry requirements for non-relativistic spin current, and this limits applications in spintronic devices. Here we demonstrate crystal-symmetry-paired spin–valley locking in a layered room-temperature antiferromagnetic compound, Rb1−δV2Te2O. Spin-resolved photoemission measurements directly show the opposite spin splitting between crystal-symmetry-paired valleys. Quasi-particle interference patterns show the suppression of intervalley scattering due to the spin selection rules that are a direct consequence of the spin–valley locking. These results suggest that Rb1−δV2Te2O is a potential room-temperature altermagnet candidate. Our observations highlight a methodology that enables both the advantages of layered materials and possible control through crystal symmetry manipulation for advancements in magnetism, electronics and information technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信