Nica Gutu, Malthe S. Nordentoft, Marlena Kuhn, Carolin Ector, Marie Möser, Anna-Marie Finger, Mathias Spliid Heltberg, Mogens Høgh Jensen, Ulrich Keilholz, Achim Kramer, Hanspeter Herzel, Adrián E. Granada
{"title":"昼夜节律耦合协调细胞生长","authors":"Nica Gutu, Malthe S. Nordentoft, Marlena Kuhn, Carolin Ector, Marie Möser, Anna-Marie Finger, Mathias Spliid Heltberg, Mogens Høgh Jensen, Ulrich Keilholz, Achim Kramer, Hanspeter Herzel, Adrián E. Granada","doi":"10.1038/s41567-025-02838-4","DOIUrl":null,"url":null,"abstract":"<p>Single-cell circadian oscillators exchange extracellular information to sustain coherent circadian rhythms at the tissue level. The circadian clock and the cell cycle couple within cells but the mechanisms underlying this interplay are poorly understood. We show that the loss of extracellular circadian synchronization disrupts circadian and cell cycle coordination within individual cells, impeding collective tissue growth. We use the theory of coupled oscillators combined with live population, and single-cell recordings and precise experimental perturbations. Coherent circadian rhythms yield oscillatory growth patterns, which unveil a global timing regulator of tissue dynamics. Knocking out core circadian elements abolishes the observed effects, highlighting the central role of circadian clock regulation. Our results underscore the role of tissue-level circadian disruption in regulating proliferation, thereby linking disrupted circadian clocks with oncogenic processes. These findings illuminate the intricate interplay between circadian rhythms, cellular signalling and tissue physiology and enhance our understanding of tissue homeostasis and growth regulation in the context of both health and disease.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"69 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circadian coupling orchestrates cell growth\",\"authors\":\"Nica Gutu, Malthe S. Nordentoft, Marlena Kuhn, Carolin Ector, Marie Möser, Anna-Marie Finger, Mathias Spliid Heltberg, Mogens Høgh Jensen, Ulrich Keilholz, Achim Kramer, Hanspeter Herzel, Adrián E. Granada\",\"doi\":\"10.1038/s41567-025-02838-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single-cell circadian oscillators exchange extracellular information to sustain coherent circadian rhythms at the tissue level. The circadian clock and the cell cycle couple within cells but the mechanisms underlying this interplay are poorly understood. We show that the loss of extracellular circadian synchronization disrupts circadian and cell cycle coordination within individual cells, impeding collective tissue growth. We use the theory of coupled oscillators combined with live population, and single-cell recordings and precise experimental perturbations. Coherent circadian rhythms yield oscillatory growth patterns, which unveil a global timing regulator of tissue dynamics. Knocking out core circadian elements abolishes the observed effects, highlighting the central role of circadian clock regulation. Our results underscore the role of tissue-level circadian disruption in regulating proliferation, thereby linking disrupted circadian clocks with oncogenic processes. These findings illuminate the intricate interplay between circadian rhythms, cellular signalling and tissue physiology and enhance our understanding of tissue homeostasis and growth regulation in the context of both health and disease.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02838-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02838-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Single-cell circadian oscillators exchange extracellular information to sustain coherent circadian rhythms at the tissue level. The circadian clock and the cell cycle couple within cells but the mechanisms underlying this interplay are poorly understood. We show that the loss of extracellular circadian synchronization disrupts circadian and cell cycle coordination within individual cells, impeding collective tissue growth. We use the theory of coupled oscillators combined with live population, and single-cell recordings and precise experimental perturbations. Coherent circadian rhythms yield oscillatory growth patterns, which unveil a global timing regulator of tissue dynamics. Knocking out core circadian elements abolishes the observed effects, highlighting the central role of circadian clock regulation. Our results underscore the role of tissue-level circadian disruption in regulating proliferation, thereby linking disrupted circadian clocks with oncogenic processes. These findings illuminate the intricate interplay between circadian rhythms, cellular signalling and tissue physiology and enhance our understanding of tissue homeostasis and growth regulation in the context of both health and disease.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.