小型化无序光子分子谱仪

IF 20.6 Q1 OPTICS
Yujia Zhang, Tom Albrow-Owen, Zhenyu Zhao, Yinpeng Chen, Yaotian Zhao, Hannah Joyce, Tawfique Hasan, Zongyin Yang, Yikai Su, Xuhan Guo
{"title":"小型化无序光子分子谱仪","authors":"Yujia Zhang, Tom Albrow-Owen, Zhenyu Zhao, Yinpeng Chen, Yaotian Zhao, Hannah Joyce, Tawfique Hasan, Zongyin Yang, Yikai Su, Xuhan Guo","doi":"10.1038/s41377-024-01705-w","DOIUrl":null,"url":null,"abstract":"<p>The burgeoning field of computational spectrometers is rapidly advancing, providing a pathway to highly miniaturized, on-chip systems for in-situ or portable measurements. The performance of these systems is typically limited in its encoder section. The response matrix is largely compromised with redundancies, due to the periodic intensity or overly smooth responses. As such, the inherent interdependence among the physical size, resolution, and bandwidth of spectral encoders poses a challenge to further miniaturization progress. Achieving high spectral resolution necessitates a long optical path length, leading to a larger footprint required for sufficient spectral decorrelation, resulting in a limited detectable free-spectral range (FSR). Here, we report a groundbreaking ultra-miniaturized disordered photonic molecule spectrometer that surpasses the resolution-bandwidth-footprint metric of current spectrometers. This computational spectrometer utilizes complicated electromagnetic coupling to determinately generate quasi-random spectral response matrices, a feature absents in other state-of-the-art systems, fundamentally overcoming limitations present in the current technologies. This configuration yields an effectively infinite FSR while upholding a high Q-factor ( &gt; 7.74 × 10<sup>5</sup>). Through dynamic manipulation of photon frequency, amplitude, and phase, a broad operational bandwidth exceeding 100 nm can be attained with an ultra-high spectral resolution of 8 pm, all encapsulated within an ultra-compact footprint measuring 70 × 50 μm². The disordered photonic molecule spectrometer is constructed on a CMOS-compatible integrated photonics platform, presenting a pioneering approach for high-performance and highly manufacturable miniaturized spectroscopy.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"85 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized disordered photonic molecule spectrometer\",\"authors\":\"Yujia Zhang, Tom Albrow-Owen, Zhenyu Zhao, Yinpeng Chen, Yaotian Zhao, Hannah Joyce, Tawfique Hasan, Zongyin Yang, Yikai Su, Xuhan Guo\",\"doi\":\"10.1038/s41377-024-01705-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The burgeoning field of computational spectrometers is rapidly advancing, providing a pathway to highly miniaturized, on-chip systems for in-situ or portable measurements. The performance of these systems is typically limited in its encoder section. The response matrix is largely compromised with redundancies, due to the periodic intensity or overly smooth responses. As such, the inherent interdependence among the physical size, resolution, and bandwidth of spectral encoders poses a challenge to further miniaturization progress. Achieving high spectral resolution necessitates a long optical path length, leading to a larger footprint required for sufficient spectral decorrelation, resulting in a limited detectable free-spectral range (FSR). Here, we report a groundbreaking ultra-miniaturized disordered photonic molecule spectrometer that surpasses the resolution-bandwidth-footprint metric of current spectrometers. This computational spectrometer utilizes complicated electromagnetic coupling to determinately generate quasi-random spectral response matrices, a feature absents in other state-of-the-art systems, fundamentally overcoming limitations present in the current technologies. This configuration yields an effectively infinite FSR while upholding a high Q-factor ( &gt; 7.74 × 10<sup>5</sup>). Through dynamic manipulation of photon frequency, amplitude, and phase, a broad operational bandwidth exceeding 100 nm can be attained with an ultra-high spectral resolution of 8 pm, all encapsulated within an ultra-compact footprint measuring 70 × 50 μm². The disordered photonic molecule spectrometer is constructed on a CMOS-compatible integrated photonics platform, presenting a pioneering approach for high-performance and highly manufacturable miniaturized spectroscopy.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01705-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01705-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

计算光谱仪的新兴领域正在迅速发展,为高度小型化的芯片系统提供了一条途径,用于原位或便携式测量。这些系统的性能通常受到其编码器部分的限制。由于周期强度或过于平滑的响应,响应矩阵在很大程度上受到冗余的损害。因此,频谱编码器的物理尺寸、分辨率和带宽之间固有的相互依赖关系对进一步小型化进程提出了挑战。实现高光谱分辨率需要较长的光程长度,从而导致足够的光谱去相关所需的更大的占地面积,从而导致可检测的自由光谱范围(FSR)有限。在这里,我们报道了一个突破性的超小型化无序光子分子光谱仪,它超过了当前光谱仪的分辨率带宽足迹指标。该计算光谱仪利用复杂的电磁耦合来确定地生成准随机光谱响应矩阵,这是其他先进系统所没有的特征,从根本上克服了当前技术中存在的局限性。这种配置产生了有效的无限FSR,同时保持了高q因子(7.74 × 105)。通过对光子频率、振幅和相位的动态操作,可以获得超过100 nm的宽操作带宽,并具有8 pm的超高光谱分辨率,所有这些都封装在70 × 50 μm²的超紧凑占地面积内。无序光子分子光谱仪建立在cmos兼容的集成光子学平台上,为高性能和高度可制造的小型化光谱提供了开创性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Miniaturized disordered photonic molecule spectrometer

Miniaturized disordered photonic molecule spectrometer

The burgeoning field of computational spectrometers is rapidly advancing, providing a pathway to highly miniaturized, on-chip systems for in-situ or portable measurements. The performance of these systems is typically limited in its encoder section. The response matrix is largely compromised with redundancies, due to the periodic intensity or overly smooth responses. As such, the inherent interdependence among the physical size, resolution, and bandwidth of spectral encoders poses a challenge to further miniaturization progress. Achieving high spectral resolution necessitates a long optical path length, leading to a larger footprint required for sufficient spectral decorrelation, resulting in a limited detectable free-spectral range (FSR). Here, we report a groundbreaking ultra-miniaturized disordered photonic molecule spectrometer that surpasses the resolution-bandwidth-footprint metric of current spectrometers. This computational spectrometer utilizes complicated electromagnetic coupling to determinately generate quasi-random spectral response matrices, a feature absents in other state-of-the-art systems, fundamentally overcoming limitations present in the current technologies. This configuration yields an effectively infinite FSR while upholding a high Q-factor ( > 7.74 × 105). Through dynamic manipulation of photon frequency, amplitude, and phase, a broad operational bandwidth exceeding 100 nm can be attained with an ultra-high spectral resolution of 8 pm, all encapsulated within an ultra-compact footprint measuring 70 × 50 μm². The disordered photonic molecule spectrometer is constructed on a CMOS-compatible integrated photonics platform, presenting a pioneering approach for high-performance and highly manufacturable miniaturized spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信