太赫兹量子级联激光频率梳的法瑞树锁定

IF 20.6 Q1 OPTICS
Guibin Liu, Xuhong Ma, Kang Zhou, Binbin Liu, Lulu Zheng, Xianglong Bi, Shumin Wu, Yanming Lu, Ziping Li, Wenjian Wan, Zhenzhen Zhang, Junsong Peng, Ya Zhang, Heping Zeng, Hua Li
{"title":"太赫兹量子级联激光频率梳的法瑞树锁定","authors":"Guibin Liu, Xuhong Ma, Kang Zhou, Binbin Liu, Lulu Zheng, Xianglong Bi, Shumin Wu, Yanming Lu, Ziping Li, Wenjian Wan, Zhenzhen Zhang, Junsong Peng, Ya Zhang, Heping Zeng, Hua Li","doi":"10.1038/s41377-025-01819-9","DOIUrl":null,"url":null,"abstract":"<p>Frequency combs show various applications in molecular fingerprinting, imaging, communications, and so on. In the terahertz frequency range, semiconductor-based quantum cascade lasers (QCLs) are ideal platforms for realizing the frequency comb operation. Although self-started frequency comb operation can be obtained in free-running terahertz QCLs due to the four-wave mixing locking effects, resonant/off-resonant microwave injection, phase locking, and femtosecond laser based locking techniques have been widely used to broaden and stabilize terahertz QCL combs. These active locking methods indeed show significant effects on the frequency stabilization of terahertz QCL combs, but they simultaneously have drawbacks, such as introducing large phase noise and requiring complex optical coupling and/or electrical circuits. Here, we demonstrate Farey tree locking of terahertz QCL frequency combs under microwave injection. The frequency competition between the Farey fraction frequency and the cavity round-trip frequency results in the frequency locking of terahertz QCL combs, and the Farey fraction frequencies can be accurately anticipated based on the downward trend of the Farey tree hierarchy. Furthermore, dual-comb experimental results show that the phase noise of the dual-comb spectral lines is significantly reduced by employing the Farey tree locking method. These results pave the way to deploying compact and low phase noise terahertz frequency comb sources.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"49 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Farey tree locking of terahertz quantum cascade laser frequency combs\",\"authors\":\"Guibin Liu, Xuhong Ma, Kang Zhou, Binbin Liu, Lulu Zheng, Xianglong Bi, Shumin Wu, Yanming Lu, Ziping Li, Wenjian Wan, Zhenzhen Zhang, Junsong Peng, Ya Zhang, Heping Zeng, Hua Li\",\"doi\":\"10.1038/s41377-025-01819-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Frequency combs show various applications in molecular fingerprinting, imaging, communications, and so on. In the terahertz frequency range, semiconductor-based quantum cascade lasers (QCLs) are ideal platforms for realizing the frequency comb operation. Although self-started frequency comb operation can be obtained in free-running terahertz QCLs due to the four-wave mixing locking effects, resonant/off-resonant microwave injection, phase locking, and femtosecond laser based locking techniques have been widely used to broaden and stabilize terahertz QCL combs. These active locking methods indeed show significant effects on the frequency stabilization of terahertz QCL combs, but they simultaneously have drawbacks, such as introducing large phase noise and requiring complex optical coupling and/or electrical circuits. Here, we demonstrate Farey tree locking of terahertz QCL frequency combs under microwave injection. The frequency competition between the Farey fraction frequency and the cavity round-trip frequency results in the frequency locking of terahertz QCL combs, and the Farey fraction frequencies can be accurately anticipated based on the downward trend of the Farey tree hierarchy. Furthermore, dual-comb experimental results show that the phase noise of the dual-comb spectral lines is significantly reduced by employing the Farey tree locking method. These results pave the way to deploying compact and low phase noise terahertz frequency comb sources.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01819-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01819-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

频率梳在分子指纹、成像、通信等方面有多种应用。在太赫兹频率范围内,基于半导体的量子级联激光器(qcl)是实现频率梳的理想平台。尽管由于四波混频锁定效应,在自由运行的太赫兹QCL中可以获得自启动频率梳,但谐振/非谐振微波注入、相位锁定和基于飞秒激光的锁定技术已被广泛用于扩大和稳定太赫兹QCL梳。这些主动锁定方法确实对太赫兹QCL梳的频率稳定有显著的影响,但同时也有缺点,例如引入大的相位噪声,需要复杂的光学耦合和/或电路。在这里,我们证明了太赫兹QCL频率梳在微波注入下的Farey树锁定。由于太赫兹QCL梳的频率竞争与谐振腔往返频率的竞争,导致其频率锁定,根据太赫兹QCL梳的Farey树层次结构的下降趋势,可以准确地预测出太赫兹QCL梳的Farey分数频率。此外,双梳实验结果表明,采用Farey树锁定方法可以显著降低双梳谱线的相位噪声。这些结果为部署紧凑和低相位噪声的太赫兹频率梳状源铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Farey tree locking of terahertz quantum cascade laser frequency combs

Farey tree locking of terahertz quantum cascade laser frequency combs

Frequency combs show various applications in molecular fingerprinting, imaging, communications, and so on. In the terahertz frequency range, semiconductor-based quantum cascade lasers (QCLs) are ideal platforms for realizing the frequency comb operation. Although self-started frequency comb operation can be obtained in free-running terahertz QCLs due to the four-wave mixing locking effects, resonant/off-resonant microwave injection, phase locking, and femtosecond laser based locking techniques have been widely used to broaden and stabilize terahertz QCL combs. These active locking methods indeed show significant effects on the frequency stabilization of terahertz QCL combs, but they simultaneously have drawbacks, such as introducing large phase noise and requiring complex optical coupling and/or electrical circuits. Here, we demonstrate Farey tree locking of terahertz QCL frequency combs under microwave injection. The frequency competition between the Farey fraction frequency and the cavity round-trip frequency results in the frequency locking of terahertz QCL combs, and the Farey fraction frequencies can be accurately anticipated based on the downward trend of the Farey tree hierarchy. Furthermore, dual-comb experimental results show that the phase noise of the dual-comb spectral lines is significantly reduced by employing the Farey tree locking method. These results pave the way to deploying compact and low phase noise terahertz frequency comb sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信