基于机器学习的核心坍缩超新星非轴对称快中微子风味不稳定性检测

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Sajad Abbar, Akira Harada, Hiroki Nagakura
{"title":"基于机器学习的核心坍缩超新星非轴对称快中微子风味不稳定性检测","authors":"Sajad Abbar, Akira Harada, Hiroki Nagakura","doi":"10.1103/physrevd.111.063077","DOIUrl":null,"url":null,"abstract":"In dense neutrino environments like core-collapse supernovae (CCSNe) and neutron star mergers, neutrinos can undergo fast flavor conversions when their angular distribution of neutrino electron lepton number (ν</a:mi>ELN</a:mi></a:math>) crosses zero along some directions. While previous studies have demonstrated the detection of axisymmetric <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ν</c:mi><c:mi>ELN</c:mi></c:math> crossings in these extreme environments, nonaxisymmetric crossings have remained elusive, mostly due to the absence of models for their angular distributions. In this study, we present a pioneering analysis of the detection of nonaxisymmetric <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>ν</e:mi><e:mi>ELN</e:mi></e:math> crossings using machine learning (ML) techniques. Our ML models are trained on data from two CCSN simulations, one with rotation and one without, where nonaxisymmetric features in neutrino angular distributions play a crucial role. We demonstrate that our ML models achieve detection accuracies exceeding 90%. This is an important improvement, especially considering that a significant portion of <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>ν</g:mi><g:mi>ELN</g:mi></g:math> crossings in these models eluded detection by earlier methods. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"183 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based detection of nonaxisymmetric fast neutrino flavor instabilities in core-collapse supernovae\",\"authors\":\"Sajad Abbar, Akira Harada, Hiroki Nagakura\",\"doi\":\"10.1103/physrevd.111.063077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In dense neutrino environments like core-collapse supernovae (CCSNe) and neutron star mergers, neutrinos can undergo fast flavor conversions when their angular distribution of neutrino electron lepton number (ν</a:mi>ELN</a:mi></a:math>) crosses zero along some directions. While previous studies have demonstrated the detection of axisymmetric <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>ν</c:mi><c:mi>ELN</c:mi></c:math> crossings in these extreme environments, nonaxisymmetric crossings have remained elusive, mostly due to the absence of models for their angular distributions. In this study, we present a pioneering analysis of the detection of nonaxisymmetric <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>ν</e:mi><e:mi>ELN</e:mi></e:math> crossings using machine learning (ML) techniques. Our ML models are trained on data from two CCSN simulations, one with rotation and one without, where nonaxisymmetric features in neutrino angular distributions play a crucial role. We demonstrate that our ML models achieve detection accuracies exceeding 90%. This is an important improvement, especially considering that a significant portion of <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>ν</g:mi><g:mi>ELN</g:mi></g:math> crossings in these models eluded detection by earlier methods. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.063077\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.063077","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在密集的中微子环境中,如核心坍缩超新星(CCSNe)和中子星合并,当中微子电子轻子数(νELN)沿某些方向的角分布跨越零时,中微子可以经历快速的风味转换。虽然以前的研究已经证明了在这些极端环境中检测到轴对称的νELN交叉,但非轴对称交叉仍然难以捉摸,主要是由于缺乏其角度分布的模型。在这项研究中,我们提出了一种使用机器学习(ML)技术检测非轴对称νELN交叉的开创性分析。我们的机器学习模型是在两个CCSN模拟的数据上训练的,一个有旋转,一个没有,其中中微子角分布的非轴对称特征起着至关重要的作用。我们证明我们的ML模型达到了超过90%的检测精度。这是一个重要的改进,特别是考虑到这些模型中有很大一部分的νELN交叉躲过了早期方法的检测。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based detection of nonaxisymmetric fast neutrino flavor instabilities in core-collapse supernovae
In dense neutrino environments like core-collapse supernovae (CCSNe) and neutron star mergers, neutrinos can undergo fast flavor conversions when their angular distribution of neutrino electron lepton number (νELN) crosses zero along some directions. While previous studies have demonstrated the detection of axisymmetric νELN crossings in these extreme environments, nonaxisymmetric crossings have remained elusive, mostly due to the absence of models for their angular distributions. In this study, we present a pioneering analysis of the detection of nonaxisymmetric νELN crossings using machine learning (ML) techniques. Our ML models are trained on data from two CCSN simulations, one with rotation and one without, where nonaxisymmetric features in neutrino angular distributions play a crucial role. We demonstrate that our ML models achieve detection accuracies exceeding 90%. This is an important improvement, especially considering that a significant portion of νELN crossings in these models eluded detection by earlier methods. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信