{"title":"随机水库计算机","authors":"Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh","doi":"10.1038/s41467-025-58349-6","DOIUrl":null,"url":null,"abstract":"<p>Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Recent advancements in reservoir computing, in particular quantum reservoir computing, use reservoirs that are inherently stochastic. In this paper, we investigate the universality of stochastic reservoir computers which use the probabilities of each stochastic reservoir state as the readout instead of the states themselves. This allows the number of readouts to scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks form universal approximating classes. We also investigate the performance of two practical examples in classification and chaotic time series prediction. While shot noise is a limiting factor, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware when noise effects are small.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"102 4 Pt 1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic reservoir computers\",\"authors\":\"Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh\",\"doi\":\"10.1038/s41467-025-58349-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Recent advancements in reservoir computing, in particular quantum reservoir computing, use reservoirs that are inherently stochastic. In this paper, we investigate the universality of stochastic reservoir computers which use the probabilities of each stochastic reservoir state as the readout instead of the states themselves. This allows the number of readouts to scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks form universal approximating classes. We also investigate the performance of two practical examples in classification and chaotic time series prediction. While shot noise is a limiting factor, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware when noise effects are small.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"102 4 Pt 1 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58349-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58349-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Recent advancements in reservoir computing, in particular quantum reservoir computing, use reservoirs that are inherently stochastic. In this paper, we investigate the universality of stochastic reservoir computers which use the probabilities of each stochastic reservoir state as the readout instead of the states themselves. This allows the number of readouts to scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks form universal approximating classes. We also investigate the performance of two practical examples in classification and chaotic time series prediction. While shot noise is a limiting factor, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware when noise effects are small.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.