反铁电交替磁体:反铁电改变磁体。

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xunkai Duan, Jiayong Zhang, Ziye Zhu, Yuntian Liu, Zhenyu Zhang, Igor Žutić, Tong Zhou
{"title":"反铁电交替磁体:反铁电改变磁体。","authors":"Xunkai Duan, Jiayong Zhang, Ziye Zhu, Yuntian Liu, Zhenyu Zhang, Igor Žutić, Tong Zhou","doi":"10.1103/PhysRevLett.134.106801","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 10","pages":"106801"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiferroelectric Altermagnets: Antiferroelectricity Alters Magnets.\",\"authors\":\"Xunkai Duan, Jiayong Zhang, Ziye Zhu, Yuntian Liu, Zhenyu Zhang, Igor Žutić, Tong Zhou\",\"doi\":\"10.1103/PhysRevLett.134.106801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.</p>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"134 10\",\"pages\":\"106801\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevLett.134.106801\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.106801","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁电耦合对于揭示高密度数据存储和高能效设备的基本现象和技术进步至关重要。兼具铁磁体和反铁磁体优点的变磁体的出现,为磁电耦合提供了前所未有的机遇。然而,电调谐变磁体仍然是一项艰巨的挑战。在此,我们展示了如何利用反铁电性和铁电性来调节改磁体的自旋分裂,并在有效模型的支持下采用基于对称性的通用设计原理,从而克服这一挑战。我们介绍了一类尚未探索的多铁性材料:反铁电性改磁体(AFEAM),在这种材料中,反铁电性和改磁性共存于一种材料中。通过第一原理计算,我们验证了在成熟的范德华金属硫(硒)磷酸盐和包晶氧化物中实现 AFEAM 的可行性。我们揭示了从二维单层到三维块体结构的 AFEAM 设计。值得注意的是,即使是微弱的电场也能通过在反铁电态和铁电态之间切换有效地切换 AFEAM 中的自旋极化。我们的发现不仅丰富了对磁电耦合的理解,还为电控自旋电子和多铁电体器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antiferroelectric Altermagnets: Antiferroelectricity Alters Magnets.

Magnetoelectric coupling is crucial for uncovering fundamental phenomena and advancing technologies in high-density data storage and energy-efficient devices. The emergence of altermagnets, which unify the advantages of ferromagnets and antiferromagnets, offers unprecedented opportunities for magnetoelectric coupling. However, electrically tuning altermagnets remains an outstanding challenge. Here, we demonstrate how this challenge can be overcome by using antiferroelectricity and ferroelectricity to modulate the spin splitting in altermagnets, employing a universal, symmetry-based design principle supported by an effective model. We introduce an unexplored class of multiferroics: antiferroelectric altermagnets (AFEAM), where antiferroelectricity and altermagnetism coexist in a single material. From first-principles calculations, we validate the feasibility of AFEAM in well-established van der Waals metal thio(seleno)phosphates and perovskite oxides. We reveal the design of AFEAM ranging from two-dimensional monolayers to three-dimensional bulk structures. Remarkably, even a weak electric field can effectively toggle spin polarization in the AFEAM by switching between antiferroelectric and ferroelectric states. Our findings not only enrich the understanding of magnetoelectric coupling but also pave the way for electrically controlled spintronic and multiferroic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信