器官发育过程中启动子的替代使用

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Jiang Tan, Yidan Sun
{"title":"器官发育过程中启动子的替代使用","authors":"Jiang Tan, Yidan Sun","doi":"10.1371/journal.pgen.1011635","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic gene expression is crucial for mammalian organ development, influencing organ-specific functions and responses. A significant number of mammalian protein-coding genes are regulated by multiple distinct promoters, suggesting that the choice of promoter is as critical as its transcriptional output. However, the role of alternative promoters in organ development remains largely unexplored. In this study, we utilized RNA-seq data from 313 mouse samples across various developmental stages in seven major organs to identify active promoters. Our analyses revealed between 967 and 3,237 developmentally dynamic promoters (DDPs) in each organ. These DDPs encompass not only major promoters with the highest activity within a gene but also alternative promoters with lower activity, which are often overlooked in traditional gene-level analyses. Notably, we found that alternative DDPs can be independently regulated compared to their major counterparts, suggesting the involvement of unique transcriptional regulatory mechanisms. Furthermore, we observed that increased alternative promoter usage plays a pivotal role in driving organ-specific functions and gene expression alterations. Our findings underscore the importance of alternative promoter usage in shaping organ identity and function, providing new insights into the regulatory complexity of organogenesis.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 3","pages":"e1011635"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative promoter usage during organ development.\",\"authors\":\"Jiang Tan, Yidan Sun\",\"doi\":\"10.1371/journal.pgen.1011635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic gene expression is crucial for mammalian organ development, influencing organ-specific functions and responses. A significant number of mammalian protein-coding genes are regulated by multiple distinct promoters, suggesting that the choice of promoter is as critical as its transcriptional output. However, the role of alternative promoters in organ development remains largely unexplored. In this study, we utilized RNA-seq data from 313 mouse samples across various developmental stages in seven major organs to identify active promoters. Our analyses revealed between 967 and 3,237 developmentally dynamic promoters (DDPs) in each organ. These DDPs encompass not only major promoters with the highest activity within a gene but also alternative promoters with lower activity, which are often overlooked in traditional gene-level analyses. Notably, we found that alternative DDPs can be independently regulated compared to their major counterparts, suggesting the involvement of unique transcriptional regulatory mechanisms. Furthermore, we observed that increased alternative promoter usage plays a pivotal role in driving organ-specific functions and gene expression alterations. Our findings underscore the importance of alternative promoter usage in shaping organ identity and function, providing new insights into the regulatory complexity of organogenesis.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 3\",\"pages\":\"e1011635\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011635\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011635","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

动态基因表达对哺乳动物器官的发育至关重要,影响着器官的特异性功能和反应。大量哺乳动物蛋白编码基因受多个不同启动子的调控,这表明启动子的选择与其转录输出同样重要。然而,替代启动子在器官发育中的作用在很大程度上仍未被探索。在这项研究中,我们利用来自 313 个小鼠样本的 RNA-seq 数据,跨越了七个主要器官的不同发育阶段,以确定活跃的启动子。我们的分析在每个器官中发现了 967 到 3,237 个发育动态启动子(DDPs)。这些启动子不仅包括基因内活性最高的主要启动子,还包括活性较低的替代启动子,而这些启动子在传统的基因水平分析中往往被忽视。值得注意的是,我们发现与主要启动子相比,替代性 DDPs 可受到独立调控,这表明其中涉及独特的转录调控机制。此外,我们还观察到,替代启动子使用的增加在驱动器官特异性功能和基因表达改变方面起着关键作用。我们的发现强调了替代启动子的使用在塑造器官特征和功能方面的重要性,为了解器官发生调控的复杂性提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative promoter usage during organ development.

Dynamic gene expression is crucial for mammalian organ development, influencing organ-specific functions and responses. A significant number of mammalian protein-coding genes are regulated by multiple distinct promoters, suggesting that the choice of promoter is as critical as its transcriptional output. However, the role of alternative promoters in organ development remains largely unexplored. In this study, we utilized RNA-seq data from 313 mouse samples across various developmental stages in seven major organs to identify active promoters. Our analyses revealed between 967 and 3,237 developmentally dynamic promoters (DDPs) in each organ. These DDPs encompass not only major promoters with the highest activity within a gene but also alternative promoters with lower activity, which are often overlooked in traditional gene-level analyses. Notably, we found that alternative DDPs can be independently regulated compared to their major counterparts, suggesting the involvement of unique transcriptional regulatory mechanisms. Furthermore, we observed that increased alternative promoter usage plays a pivotal role in driving organ-specific functions and gene expression alterations. Our findings underscore the importance of alternative promoter usage in shaping organ identity and function, providing new insights into the regulatory complexity of organogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信