{"title":"Reconfigurable Self-Phase Modulation Enabled by Cascaded Nonlinear Backaction in Integrated Photonics.","authors":"Chaohan Cui, Liang Zhang, Linran Fan","doi":"10.1103/PhysRevLett.134.103803","DOIUrl":null,"url":null,"abstract":"<p><p>Self-phase modulation is ubiquitous in optical systems: It provides foundational functionality to numerous photonic technologies, such as soliton generation and ultrafast pulse compression. However, it remains challenging to directly modify the coefficient of self-phase modulation, which is typically regarded as a fixed property of optical materials and structures. In this work, we overcome this limitation and demonstrate reconfigurable self-phase modulation with an integrated photonic cavity. This is achieved by introducing the engineered backaction from the reservoir photonic resonance through the cascaded second-order nonlinear coupling. The coefficient of self-phase modulation is tuned from -2.7 to +4.7 of its intrinsic value. With negative coefficients, we observe the anomalous self-phase modulation, where photonic resonances are shifted towards higher frequencies. With the reconfigurable self-phase modulation, we further demonstrate the control of spontaneous chiral symmetry breaking in the integrated photonic ring cavity.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 10","pages":"103803"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.103803","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Reconfigurable Self-Phase Modulation Enabled by Cascaded Nonlinear Backaction in Integrated Photonics.
Self-phase modulation is ubiquitous in optical systems: It provides foundational functionality to numerous photonic technologies, such as soliton generation and ultrafast pulse compression. However, it remains challenging to directly modify the coefficient of self-phase modulation, which is typically regarded as a fixed property of optical materials and structures. In this work, we overcome this limitation and demonstrate reconfigurable self-phase modulation with an integrated photonic cavity. This is achieved by introducing the engineered backaction from the reservoir photonic resonance through the cascaded second-order nonlinear coupling. The coefficient of self-phase modulation is tuned from -2.7 to +4.7 of its intrinsic value. With negative coefficients, we observe the anomalous self-phase modulation, where photonic resonances are shifted towards higher frequencies. With the reconfigurable self-phase modulation, we further demonstrate the control of spontaneous chiral symmetry breaking in the integrated photonic ring cavity.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks