{"title":"糖化血红蛋白色谱柱微预过滤器的研制。","authors":"Zhiyan Li, Hongying Wang, Le Chang, Cunling Yan","doi":"10.1007/s00216-025-05844-w","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of blood and its matrix in high-performance liquid chromatography (HPLC) glycated hemoglobin (HbA1c) assays is closely related to column performance. However, the available prefilters with a single structure or surface membrane materials are not ideal for column protection, and coupled with the complexity of blood samples, leads to rapid degradation of column performance. Therefore, we have developed a new microprefilter with a three-stage filtration design and depth filter material to protect the column. All filter materials used in the preparation of microprefilters were characterized, screened, and optimized, and then manufactured on the basis of optimized filter materials, which are depth filter material microprefilters. Based on the material and structural design, microprefilters were capable of filtering particulate matter from test samples on a step-by-step basis to avoid the plugging effect that occurs when all sizes of substances are gathered together. Moreover, all newly developed microprefilters can be tested more times, up to 600 times. Microprefilters with small-pore-size final filtration membranes of polyethersulfone, hydrophilic polytetrafluoroethylene, and mixed cellulose showed excellent column protection in terms of column efficiency, HbA1c retention time, number of column tests, and column backpressure, and prolonged column lifetime by as much as 20-30% compared with microprefilters with large-pore-size final membranes. Our study provides valuable depth filter material microprefilters with multistage filtration for chromatography columns, and showed excellent column protection and prolonged column lifetime. Meanwhile, microprefilters can be tested more times. The newly developed microprefilters with a small-pore-size final membrane are the optimal choice for column protection of the HbA1c assay.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of microprefilter for chromatography column in HbA1c assays.\",\"authors\":\"Zhiyan Li, Hongying Wang, Le Chang, Cunling Yan\",\"doi\":\"10.1007/s00216-025-05844-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complexity of blood and its matrix in high-performance liquid chromatography (HPLC) glycated hemoglobin (HbA1c) assays is closely related to column performance. However, the available prefilters with a single structure or surface membrane materials are not ideal for column protection, and coupled with the complexity of blood samples, leads to rapid degradation of column performance. Therefore, we have developed a new microprefilter with a three-stage filtration design and depth filter material to protect the column. All filter materials used in the preparation of microprefilters were characterized, screened, and optimized, and then manufactured on the basis of optimized filter materials, which are depth filter material microprefilters. Based on the material and structural design, microprefilters were capable of filtering particulate matter from test samples on a step-by-step basis to avoid the plugging effect that occurs when all sizes of substances are gathered together. Moreover, all newly developed microprefilters can be tested more times, up to 600 times. Microprefilters with small-pore-size final filtration membranes of polyethersulfone, hydrophilic polytetrafluoroethylene, and mixed cellulose showed excellent column protection in terms of column efficiency, HbA1c retention time, number of column tests, and column backpressure, and prolonged column lifetime by as much as 20-30% compared with microprefilters with large-pore-size final membranes. Our study provides valuable depth filter material microprefilters with multistage filtration for chromatography columns, and showed excellent column protection and prolonged column lifetime. Meanwhile, microprefilters can be tested more times. The newly developed microprefilters with a small-pore-size final membrane are the optimal choice for column protection of the HbA1c assay.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-05844-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05844-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development of microprefilter for chromatography column in HbA1c assays.
The complexity of blood and its matrix in high-performance liquid chromatography (HPLC) glycated hemoglobin (HbA1c) assays is closely related to column performance. However, the available prefilters with a single structure or surface membrane materials are not ideal for column protection, and coupled with the complexity of blood samples, leads to rapid degradation of column performance. Therefore, we have developed a new microprefilter with a three-stage filtration design and depth filter material to protect the column. All filter materials used in the preparation of microprefilters were characterized, screened, and optimized, and then manufactured on the basis of optimized filter materials, which are depth filter material microprefilters. Based on the material and structural design, microprefilters were capable of filtering particulate matter from test samples on a step-by-step basis to avoid the plugging effect that occurs when all sizes of substances are gathered together. Moreover, all newly developed microprefilters can be tested more times, up to 600 times. Microprefilters with small-pore-size final filtration membranes of polyethersulfone, hydrophilic polytetrafluoroethylene, and mixed cellulose showed excellent column protection in terms of column efficiency, HbA1c retention time, number of column tests, and column backpressure, and prolonged column lifetime by as much as 20-30% compared with microprefilters with large-pore-size final membranes. Our study provides valuable depth filter material microprefilters with multistage filtration for chromatography columns, and showed excellent column protection and prolonged column lifetime. Meanwhile, microprefilters can be tested more times. The newly developed microprefilters with a small-pore-size final membrane are the optimal choice for column protection of the HbA1c assay.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.