Hayk H. Nersisyan , Junmo Jeong , Hoyoung Suh , Jong Hyeon Lee
{"title":"Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis","authors":"Hayk H. Nersisyan , Junmo Jeong , Hoyoung Suh , Jong Hyeon Lee","doi":"10.1016/j.carbon.2025.120268","DOIUrl":null,"url":null,"abstract":"<div><div>A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO<sub>3</sub> is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m<sup>2</sup>/g near the combustion boundary at <em>k</em> = 8 is achieved. When tested as support for Mo<sub>2</sub>C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120268"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis
A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO3 is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m2/g near the combustion boundary at k = 8 is achieved. When tested as support for Mo2C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.