Sara Mustafi , Rongsheng Cai , Sam Sullivan-Allsop , Matthew Smith , Nicholas J. Clark , Matthew Lindley , Ding Peng , Kostya S. Novoselov , Sarah J. Haigh , Tatiana Latychevskaia
{"title":"用时间序列会聚束电子衍射研究石墨烯上单个金纳米粒子同时在实空间和衍射空间中的动力学","authors":"Sara Mustafi , Rongsheng Cai , Sam Sullivan-Allsop , Matthew Smith , Nicholas J. Clark , Matthew Lindley , Ding Peng , Kostya S. Novoselov , Sarah J. Haigh , Tatiana Latychevskaia","doi":"10.1016/j.micron.2025.103814","DOIUrl":null,"url":null,"abstract":"<div><div>Convergent beam electron diffraction (CBED) on two-dimensional materials allows simultaneous recording of the real-space image (tens of nanometers in size) and diffraction pattern of the same sample in one single-shot intensity measurement. In this study, we employ time-series CBED to visualize single Au nanoparticles deposited on graphene. The real-space image of the probed region, with the amount, size, and positions of single Au nanoparticles, is directly observed in the zero-order CBED disk, while the atomic arrangement of the Au nanoparticles is available from the intensity distributions in the higher-order CBED disks. From the time-series CBED patterns, the movement of a single Au nanoparticle with rotation up to 4° was recorded. We also observed facet diffraction lines ̶ intense bright lines formed between the CBED disks of the Au nanoparticle, which we explain by diffraction at the Au nanoparticle's facets. This work showcases CBED as a useful technique for studying adsorbates on graphene using Au nanoparticles as a model platform, and paves the way for future studies of different objects deposited on graphene.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"194 ","pages":"Article 103814"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of single Au nanoparticles on graphene simultaneously in real- and diffraction space by time-series convergent beam electron diffraction\",\"authors\":\"Sara Mustafi , Rongsheng Cai , Sam Sullivan-Allsop , Matthew Smith , Nicholas J. Clark , Matthew Lindley , Ding Peng , Kostya S. Novoselov , Sarah J. Haigh , Tatiana Latychevskaia\",\"doi\":\"10.1016/j.micron.2025.103814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Convergent beam electron diffraction (CBED) on two-dimensional materials allows simultaneous recording of the real-space image (tens of nanometers in size) and diffraction pattern of the same sample in one single-shot intensity measurement. In this study, we employ time-series CBED to visualize single Au nanoparticles deposited on graphene. The real-space image of the probed region, with the amount, size, and positions of single Au nanoparticles, is directly observed in the zero-order CBED disk, while the atomic arrangement of the Au nanoparticles is available from the intensity distributions in the higher-order CBED disks. From the time-series CBED patterns, the movement of a single Au nanoparticle with rotation up to 4° was recorded. We also observed facet diffraction lines ̶ intense bright lines formed between the CBED disks of the Au nanoparticle, which we explain by diffraction at the Au nanoparticle's facets. This work showcases CBED as a useful technique for studying adsorbates on graphene using Au nanoparticles as a model platform, and paves the way for future studies of different objects deposited on graphene.</div></div>\",\"PeriodicalId\":18501,\"journal\":{\"name\":\"Micron\",\"volume\":\"194 \",\"pages\":\"Article 103814\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micron\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968432825000320\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432825000320","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
Dynamics of single Au nanoparticles on graphene simultaneously in real- and diffraction space by time-series convergent beam electron diffraction
Convergent beam electron diffraction (CBED) on two-dimensional materials allows simultaneous recording of the real-space image (tens of nanometers in size) and diffraction pattern of the same sample in one single-shot intensity measurement. In this study, we employ time-series CBED to visualize single Au nanoparticles deposited on graphene. The real-space image of the probed region, with the amount, size, and positions of single Au nanoparticles, is directly observed in the zero-order CBED disk, while the atomic arrangement of the Au nanoparticles is available from the intensity distributions in the higher-order CBED disks. From the time-series CBED patterns, the movement of a single Au nanoparticle with rotation up to 4° was recorded. We also observed facet diffraction lines ̶ intense bright lines formed between the CBED disks of the Au nanoparticle, which we explain by diffraction at the Au nanoparticle's facets. This work showcases CBED as a useful technique for studying adsorbates on graphene using Au nanoparticles as a model platform, and paves the way for future studies of different objects deposited on graphene.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.