Yabing Zhang , Juan Xin , Di Zhao , Gezi Chen , Penghao Ji , Panmiao Liu , Hua Wei , Hongwei Wang , Yuzhong Xia , Yong Wang , Zhongyu Wang , Xiangyi Ren , Minfeng Huo , Hai Yu , Jianjun Yang
{"title":"六氰合铁酸镁通过抑制小胶质细胞活化和神经元杯突变化缓解败血症相关脑病","authors":"Yabing Zhang , Juan Xin , Di Zhao , Gezi Chen , Penghao Ji , Panmiao Liu , Hua Wei , Hongwei Wang , Yuzhong Xia , Yong Wang , Zhongyu Wang , Xiangyi Ren , Minfeng Huo , Hai Yu , Jianjun Yang","doi":"10.1016/j.biomaterials.2025.123279","DOIUrl":null,"url":null,"abstract":"<div><div>Sepsis-associated encephalopathy (SAE) is a severe neurological complication stemming from sepsis, characterized by cognitive impairment. The underlying mechanisms involve oxidative stress, neuroinflammation, and disruptions in copper/iron homeostasis. This study introduces magnesium hexacyanoferrate (MgHCF) as a novel compound and explores its therapeutic potential in SAE. Our investigation reveals that MgHCF features intriguing properties in effectively scavenging reactive oxygen species (ROS), and chelating excess copper and iron. Treatment with MgHCF significantly attenuates microglia activation, and protects neuronal cells from oxidative damage and cytotoxicity induced by activated microglia in vitro and in vivo. Furthermore, the cognitive impairment in SAE mice is effectively alleviated by MgHCF treatment, mechanically through a reduction in the copper/iron-responsive histone methylation, and neuronal cuproptosis. These findings suggest MgHCF as a promising therapeutic agent for SAE, targeting the copper/iron signaling pathway to alleviate neuroinflammation, and neuronal cuproptosis.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123279"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium hexacyanoferrate mitigates sepsis-associated encephalopathy through inhibiting microglial activation and neuronal cuproptosis\",\"authors\":\"Yabing Zhang , Juan Xin , Di Zhao , Gezi Chen , Penghao Ji , Panmiao Liu , Hua Wei , Hongwei Wang , Yuzhong Xia , Yong Wang , Zhongyu Wang , Xiangyi Ren , Minfeng Huo , Hai Yu , Jianjun Yang\",\"doi\":\"10.1016/j.biomaterials.2025.123279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sepsis-associated encephalopathy (SAE) is a severe neurological complication stemming from sepsis, characterized by cognitive impairment. The underlying mechanisms involve oxidative stress, neuroinflammation, and disruptions in copper/iron homeostasis. This study introduces magnesium hexacyanoferrate (MgHCF) as a novel compound and explores its therapeutic potential in SAE. Our investigation reveals that MgHCF features intriguing properties in effectively scavenging reactive oxygen species (ROS), and chelating excess copper and iron. Treatment with MgHCF significantly attenuates microglia activation, and protects neuronal cells from oxidative damage and cytotoxicity induced by activated microglia in vitro and in vivo. Furthermore, the cognitive impairment in SAE mice is effectively alleviated by MgHCF treatment, mechanically through a reduction in the copper/iron-responsive histone methylation, and neuronal cuproptosis. These findings suggest MgHCF as a promising therapeutic agent for SAE, targeting the copper/iron signaling pathway to alleviate neuroinflammation, and neuronal cuproptosis.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"321 \",\"pages\":\"Article 123279\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014296122500198X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014296122500198X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnesium hexacyanoferrate mitigates sepsis-associated encephalopathy through inhibiting microglial activation and neuronal cuproptosis
Sepsis-associated encephalopathy (SAE) is a severe neurological complication stemming from sepsis, characterized by cognitive impairment. The underlying mechanisms involve oxidative stress, neuroinflammation, and disruptions in copper/iron homeostasis. This study introduces magnesium hexacyanoferrate (MgHCF) as a novel compound and explores its therapeutic potential in SAE. Our investigation reveals that MgHCF features intriguing properties in effectively scavenging reactive oxygen species (ROS), and chelating excess copper and iron. Treatment with MgHCF significantly attenuates microglia activation, and protects neuronal cells from oxidative damage and cytotoxicity induced by activated microglia in vitro and in vivo. Furthermore, the cognitive impairment in SAE mice is effectively alleviated by MgHCF treatment, mechanically through a reduction in the copper/iron-responsive histone methylation, and neuronal cuproptosis. These findings suggest MgHCF as a promising therapeutic agent for SAE, targeting the copper/iron signaling pathway to alleviate neuroinflammation, and neuronal cuproptosis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.