使用集成深度学习框架改进表面O3浓度的无缝映射

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Tongwen Li, Jingan Wu, Yuan Wang, Yuenong Su
{"title":"使用集成深度学习框架改进表面O3浓度的无缝映射","authors":"Tongwen Li, Jingan Wu, Yuan Wang, Yuenong Su","doi":"10.1038/s41612-025-01007-x","DOIUrl":null,"url":null,"abstract":"<p>Satellite-derived ozone (O<sub>3</sub>) data often contain spatial gaps due to factors such as cloud cover. To achieve seamless O<sub>3</sub> mapping, researchers typically either reconstructed the missing satellite input data before the O<sub>3</sub> inversion or reconstructed the missing O<sub>3</sub> data after inversion. Unlike previous step-by-step approaches, this study proposed a deep learning-based “inversion-reconstruction” integrated framework to estimate seamless surface O<sub>3</sub>. By inputting gapped satellite data and other auxiliary information, the framework directly yielded gap-free O<sub>3</sub> data. The O<sub>3</sub> inversion and reconstruction results were jointly optimized in the framework, ensuring high consistency in the seamless mapping of O<sub>3</sub> concentrations. Holdout, spatial, and temporal validations demonstrated the effectiveness of our method for mapping seamless O<sub>3</sub> across China in 2019, with R² values of 0.809, 0.760, and 0.733, respectively. Daily seamless mapping revealed the spatiotemporal patterns of O<sub>3</sub>, pollution episodes, and their potential transport routes. The satellite-inverted gapped O<sub>3</sub> data showed a 7.37 ± 4.18% difference from the gap-free merged O<sub>3</sub> data on a national daily scale.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"34 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved seamless mapping of surface O3 concentrations using an integrated deep learning framework\",\"authors\":\"Tongwen Li, Jingan Wu, Yuan Wang, Yuenong Su\",\"doi\":\"10.1038/s41612-025-01007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Satellite-derived ozone (O<sub>3</sub>) data often contain spatial gaps due to factors such as cloud cover. To achieve seamless O<sub>3</sub> mapping, researchers typically either reconstructed the missing satellite input data before the O<sub>3</sub> inversion or reconstructed the missing O<sub>3</sub> data after inversion. Unlike previous step-by-step approaches, this study proposed a deep learning-based “inversion-reconstruction” integrated framework to estimate seamless surface O<sub>3</sub>. By inputting gapped satellite data and other auxiliary information, the framework directly yielded gap-free O<sub>3</sub> data. The O<sub>3</sub> inversion and reconstruction results were jointly optimized in the framework, ensuring high consistency in the seamless mapping of O<sub>3</sub> concentrations. Holdout, spatial, and temporal validations demonstrated the effectiveness of our method for mapping seamless O<sub>3</sub> across China in 2019, with R² values of 0.809, 0.760, and 0.733, respectively. Daily seamless mapping revealed the spatiotemporal patterns of O<sub>3</sub>, pollution episodes, and their potential transport routes. The satellite-inverted gapped O<sub>3</sub> data showed a 7.37 ± 4.18% difference from the gap-free merged O<sub>3</sub> data on a national daily scale.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01007-x\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01007-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

卫星生成的臭氧(O3)数据往往由于云层等因素而存在空间缺口。为了实现O3的无缝映射,研究人员通常要么在O3反演前重建缺失的卫星输入数据,要么在反演后重建缺失的O3数据。与之前的逐步方法不同,本研究提出了一种基于深度学习的“反演-重建”集成框架来估计无缝表面O3。通过输入有缺口的卫星数据和其他辅助信息,该框架直接生成无缺口的O3数据。在框架内对O3反演和重建结果进行了联合优化,保证了O3浓度无缝映射的高一致性。结果表明,该方法对2019年中国无缝O3进行了有效映射,R²值分别为0.809、0.760和0.733。每日无缝映射揭示了O3的时空格局、污染事件及其潜在的运输路线。卫星反演的缺口O3数据与无缺口合并O3数据在全国日尺度上的差异为7.37±4.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved seamless mapping of surface O3 concentrations using an integrated deep learning framework

Improved seamless mapping of surface O3 concentrations using an integrated deep learning framework

Satellite-derived ozone (O3) data often contain spatial gaps due to factors such as cloud cover. To achieve seamless O3 mapping, researchers typically either reconstructed the missing satellite input data before the O3 inversion or reconstructed the missing O3 data after inversion. Unlike previous step-by-step approaches, this study proposed a deep learning-based “inversion-reconstruction” integrated framework to estimate seamless surface O3. By inputting gapped satellite data and other auxiliary information, the framework directly yielded gap-free O3 data. The O3 inversion and reconstruction results were jointly optimized in the framework, ensuring high consistency in the seamless mapping of O3 concentrations. Holdout, spatial, and temporal validations demonstrated the effectiveness of our method for mapping seamless O3 across China in 2019, with R² values of 0.809, 0.760, and 0.733, respectively. Daily seamless mapping revealed the spatiotemporal patterns of O3, pollution episodes, and their potential transport routes. The satellite-inverted gapped O3 data showed a 7.37 ± 4.18% difference from the gap-free merged O3 data on a national daily scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信