D=4中带电旋转黑洞的CFT相变分析:全息热力学方法

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Abhishek Baruah, Prabwal Phukon
{"title":"D=4中带电旋转黑洞的CFT相变分析:全息热力学方法","authors":"Abhishek Baruah, Prabwal Phukon","doi":"10.1103/physrevd.111.066022","DOIUrl":null,"url":null,"abstract":"We investigate the holographic thermodynamics of 4-D Kerr-Newman anti–de Sitter (AdS) black holes, focusing on the conformal thermal states that are dual to these black holes. We explore the thermodynamic behavior within specific ensembles characterized by fixed sets of variables: (</a:mo>Q</a:mi>,</a:mo>J</a:mi>,</a:mo>V</a:mi>,</a:mo>C</a:mi>)</a:mo></a:math>, <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mrow><h:mo stretchy=\"false\">(</h:mo><h:mi mathvariant=\"script\">Q</h:mi><h:mo>,</h:mo><h:mi mathvariant=\"normal\">Ω</h:mi><h:mo>,</h:mo><h:mi mathvariant=\"script\">V</h:mi><h:mo>,</h:mo><h:mi>C</h:mi><h:mo stretchy=\"false\">)</h:mo></h:mrow></h:math>, <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mrow><o:mo stretchy=\"false\">(</o:mo><o:mi>φ</o:mi><o:mo>,</o:mo><o:mi mathvariant=\"normal\">Ω</o:mi><o:mo>,</o:mo><o:mi mathvariant=\"script\">V</o:mi><o:mo>,</o:mo><o:mi>C</o:mi><o:mo stretchy=\"false\">)</o:mo></o:mrow></o:math>, <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mo stretchy=\"false\">(</u:mo><u:mi>φ</u:mi><u:mo>,</u:mo><u:mi mathvariant=\"script\">J</u:mi><u:mo>,</u:mo><u:mi mathvariant=\"script\">V</u:mi><u:mo>,</u:mo><u:mi>C</u:mi><u:mo stretchy=\"false\">)</u:mo></u:mrow></u:math>, (</ab:mo>Q</ab:mi>,</ab:mo>Ω</ab:mi>,</ab:mo>p</ab:mi>,</ab:mo>C</ab:mi>)</ab:mo></ab:mrow></ab:math>, and <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>φ</gb:mi><gb:mo>,</gb:mo><gb:mi mathvariant=\"normal\">Ω</gb:mi><gb:mo>,</gb:mo><gb:mi>p</gb:mi><gb:mo>,</gb:mo><gb:mi>C</gb:mi><gb:mo stretchy=\"false\">)</gb:mo></gb:math>. Here, <lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lb:mi>φ</lb:mi></lb:math>, <nb:math xmlns:nb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nb:mi mathvariant=\"script\">Q</nb:mi></nb:math>, <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi mathvariant=\"normal\">Ω</qb:mi></qb:math>, <tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mi mathvariant=\"script\">J</tb:mi></tb:math>, <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>p</wb:mi></wb:math>, <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi mathvariant=\"script\">V</yb:mi></yb:math>, and <bc:math xmlns:bc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><bc:mi>C</bc:mi></bc:math> represent the electric potential, electric charge, angular velocity, angular momentum, conformal field theory (CFT) pressure, CFT volume, and central charge, respectively. The inclusion of both charge and momentum significantly enriches the regime of phase transitions, leading to a variety of phenomena including first-order van der Waals-type phase transitions, (de)confinement phase transitions, Davies-type phase transitions, and second-order superfluid <dc:math xmlns:dc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><dc:mi>λ</dc:mi></dc:math>-type phase transitions. Notably, the introduction of the CFT pressure variable allows us to identify phase transitions and critical behavior in the <fc:math xmlns:fc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fc:mo stretchy=\"false\">(</fc:mo><fc:mi mathvariant=\"script\">Q</fc:mi><fc:mo>,</fc:mo><fc:mi mathvariant=\"normal\">Ω</fc:mi><fc:mo>,</fc:mo><fc:mi>p</fc:mi><fc:mo>,</fc:mo><fc:mi>C</fc:mi><fc:mo stretchy=\"false\">)</fc:mo></fc:math> and <lc:math xmlns:lc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><lc:mo stretchy=\"false\">(</lc:mo><lc:mi>φ</lc:mi><lc:mo>,</lc:mo><lc:mi mathvariant=\"normal\">Ω</lc:mi><lc:mo>,</lc:mo><lc:mi>p</lc:mi><lc:mo>,</lc:mo><lc:mi>C</lc:mi><lc:mo stretchy=\"false\">)</lc:mo></lc:math> ensembles, which had not been previously observed. This study underscores the complexity and richness of phase transitions in these systems due to the inclusion of both charge and angular momentum. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFT phase transition analysis of charged, rotating black holes in D=4 : A holographic thermodynamics approach\",\"authors\":\"Abhishek Baruah, Prabwal Phukon\",\"doi\":\"10.1103/physrevd.111.066022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the holographic thermodynamics of 4-D Kerr-Newman anti–de Sitter (AdS) black holes, focusing on the conformal thermal states that are dual to these black holes. We explore the thermodynamic behavior within specific ensembles characterized by fixed sets of variables: (</a:mo>Q</a:mi>,</a:mo>J</a:mi>,</a:mo>V</a:mi>,</a:mo>C</a:mi>)</a:mo></a:math>, <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:mrow><h:mo stretchy=\\\"false\\\">(</h:mo><h:mi mathvariant=\\\"script\\\">Q</h:mi><h:mo>,</h:mo><h:mi mathvariant=\\\"normal\\\">Ω</h:mi><h:mo>,</h:mo><h:mi mathvariant=\\\"script\\\">V</h:mi><h:mo>,</h:mo><h:mi>C</h:mi><h:mo stretchy=\\\"false\\\">)</h:mo></h:mrow></h:math>, <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mrow><o:mo stretchy=\\\"false\\\">(</o:mo><o:mi>φ</o:mi><o:mo>,</o:mo><o:mi mathvariant=\\\"normal\\\">Ω</o:mi><o:mo>,</o:mo><o:mi mathvariant=\\\"script\\\">V</o:mi><o:mo>,</o:mo><o:mi>C</o:mi><o:mo stretchy=\\\"false\\\">)</o:mo></o:mrow></o:math>, <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mrow><u:mo stretchy=\\\"false\\\">(</u:mo><u:mi>φ</u:mi><u:mo>,</u:mo><u:mi mathvariant=\\\"script\\\">J</u:mi><u:mo>,</u:mo><u:mi mathvariant=\\\"script\\\">V</u:mi><u:mo>,</u:mo><u:mi>C</u:mi><u:mo stretchy=\\\"false\\\">)</u:mo></u:mrow></u:math>, (</ab:mo>Q</ab:mi>,</ab:mo>Ω</ab:mi>,</ab:mo>p</ab:mi>,</ab:mo>C</ab:mi>)</ab:mo></ab:mrow></ab:math>, and <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mo stretchy=\\\"false\\\">(</gb:mo><gb:mi>φ</gb:mi><gb:mo>,</gb:mo><gb:mi mathvariant=\\\"normal\\\">Ω</gb:mi><gb:mo>,</gb:mo><gb:mi>p</gb:mi><gb:mo>,</gb:mo><gb:mi>C</gb:mi><gb:mo stretchy=\\\"false\\\">)</gb:mo></gb:math>. Here, <lb:math xmlns:lb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lb:mi>φ</lb:mi></lb:math>, <nb:math xmlns:nb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><nb:mi mathvariant=\\\"script\\\">Q</nb:mi></nb:math>, <qb:math xmlns:qb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qb:mi mathvariant=\\\"normal\\\">Ω</qb:mi></qb:math>, <tb:math xmlns:tb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><tb:mi mathvariant=\\\"script\\\">J</tb:mi></tb:math>, <wb:math xmlns:wb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><wb:mi>p</wb:mi></wb:math>, <yb:math xmlns:yb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><yb:mi mathvariant=\\\"script\\\">V</yb:mi></yb:math>, and <bc:math xmlns:bc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><bc:mi>C</bc:mi></bc:math> represent the electric potential, electric charge, angular velocity, angular momentum, conformal field theory (CFT) pressure, CFT volume, and central charge, respectively. The inclusion of both charge and momentum significantly enriches the regime of phase transitions, leading to a variety of phenomena including first-order van der Waals-type phase transitions, (de)confinement phase transitions, Davies-type phase transitions, and second-order superfluid <dc:math xmlns:dc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><dc:mi>λ</dc:mi></dc:math>-type phase transitions. Notably, the introduction of the CFT pressure variable allows us to identify phase transitions and critical behavior in the <fc:math xmlns:fc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><fc:mo stretchy=\\\"false\\\">(</fc:mo><fc:mi mathvariant=\\\"script\\\">Q</fc:mi><fc:mo>,</fc:mo><fc:mi mathvariant=\\\"normal\\\">Ω</fc:mi><fc:mo>,</fc:mo><fc:mi>p</fc:mi><fc:mo>,</fc:mo><fc:mi>C</fc:mi><fc:mo stretchy=\\\"false\\\">)</fc:mo></fc:math> and <lc:math xmlns:lc=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><lc:mo stretchy=\\\"false\\\">(</lc:mo><lc:mi>φ</lc:mi><lc:mo>,</lc:mo><lc:mi mathvariant=\\\"normal\\\">Ω</lc:mi><lc:mo>,</lc:mo><lc:mi>p</lc:mi><lc:mo>,</lc:mo><lc:mi>C</lc:mi><lc:mo stretchy=\\\"false\\\">)</lc:mo></lc:math> ensembles, which had not been previously observed. This study underscores the complexity and richness of phase transitions in these systems due to the inclusion of both charge and angular momentum. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.066022\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.066022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了4-D Kerr-Newman反德西特(AdS)黑洞的全息热力学,重点研究了这些黑洞的对偶保形热态。我们探索了以固定变量集为特征的特定系综中的热力学行为:(Q,J,V,C), (Q,Ω,V,C), (φ,Ω,V,C), (φ,J,V,C), (Q,Ω,p,C)和(φ,Ω,p,C)。其中φ、Q、Ω、J、p、V、C分别代表电势、电荷、角速度、角动量、共形场理论(CFT)压力、CFT体积和中心电荷。电荷和动量的加入极大地丰富了相变的范围,导致了一系列的相变现象,包括一阶范德华相变、(德)约束相变、戴维斯相变和二阶超流λ型相变。值得注意的是,CFT压力变量的引入使我们能够识别(Q,Ω,p,C)和(φ,Ω,p,C)系综中的相变和临界行为,这是以前没有观察到的。这项研究强调了由于包含电荷和角动量,这些系统中相变的复杂性和丰富性。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFT phase transition analysis of charged, rotating black holes in D=4 : A holographic thermodynamics approach
We investigate the holographic thermodynamics of 4-D Kerr-Newman anti–de Sitter (AdS) black holes, focusing on the conformal thermal states that are dual to these black holes. We explore the thermodynamic behavior within specific ensembles characterized by fixed sets of variables: (Q,J,V,C), (Q,Ω,V,C), (φ,Ω,V,C), (φ,J,V,C), (Q,Ω,p,C), and (φ,Ω,p,C). Here, φ, Q, Ω, J, p, V, and C represent the electric potential, electric charge, angular velocity, angular momentum, conformal field theory (CFT) pressure, CFT volume, and central charge, respectively. The inclusion of both charge and momentum significantly enriches the regime of phase transitions, leading to a variety of phenomena including first-order van der Waals-type phase transitions, (de)confinement phase transitions, Davies-type phase transitions, and second-order superfluid λ-type phase transitions. Notably, the introduction of the CFT pressure variable allows us to identify phase transitions and critical behavior in the (Q,Ω,p,C) and (φ,Ω,p,C) ensembles, which had not been previously observed. This study underscores the complexity and richness of phase transitions in these systems due to the inclusion of both charge and angular momentum. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信