抗感黑加仑叶层菌群对白粉病感染的代谢物介导反应

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Xueying Zhao, Along Chen, Xiaonan Gong, Peng Zhang, Kaojia Cui, Shuxian Li, Weixia Zhang, Chenqiao Zhu, Huixin Gang, Junwei Huo, Fuchun Xie, Dong Qin
{"title":"抗感黑加仑叶层菌群对白粉病感染的代谢物介导反应","authors":"Xueying Zhao, Along Chen, Xiaonan Gong, Peng Zhang, Kaojia Cui, Shuxian Li, Weixia Zhang, Chenqiao Zhu, Huixin Gang, Junwei Huo, Fuchun Xie, Dong Qin","doi":"10.1093/hr/uhaf092","DOIUrl":null,"url":null,"abstract":"Plant-metabolite-microbe interactions play essential roles in disease suppression. Most studies focus on the root exudates and rhizosphere microbiota to fight soil-borne pathogens, but it is poorly understood whether the changes in phyllosphere metabolites can actively recruit beneficial microbes to enhance disease resistance. In this study, the differences of phyllosphere microbial communities and key leaf metabolites were systematically explored in resistant and susceptible black currant cultivars related to powdery mildew (PM) by integrating microbiome and metabolomic analyses. The results showed that the diversity and composition of microbiome changed, as highlighted by a reduction in microbial alpha-diversity and beta-diversity of susceptible cultivars. An increasing fungal network complexity and a decreasing bacterial network complexity occurred in resistant cultivar. Bacillus, Burkholderia (bacteria), and Penicillium (fungi) were identified as keystone microorganisms and resistance effectors in resistant cultivar. Metabolites such as salicylic acid, trans-zeatin, and griseofulvin were more abundant in resistant cultivar, which had a positive regulatory effect on the abundance of bacterial and fungal keystones. These findings unravel that resistant cultivar can enrich beneficial microorganisms by adjusting leaf metabolites, thus showing the external disease-resistant response. Moreover, the reduced stomatal number and increased tissue thickness were observed in resistant cultivar, suggesting inherent physical structure also provides a basic defense against PM pathogens. Therefore, resistant black currant cultivar displayed multi-level defense responses of physical structures, metabolites and microorganisms to PM pathogens. Collectively, our study highlights the potential for utilizing phyllosphere microbiome dynamics and metabolomic adjustments in agricultural practices, plant breeding, and microbiome engineering to develop disease-resistant crops.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"34 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolites-mediated responses of phyllosphere microbiota to powdery mildew infection in resistant and susceptible black currant cultivars\",\"authors\":\"Xueying Zhao, Along Chen, Xiaonan Gong, Peng Zhang, Kaojia Cui, Shuxian Li, Weixia Zhang, Chenqiao Zhu, Huixin Gang, Junwei Huo, Fuchun Xie, Dong Qin\",\"doi\":\"10.1093/hr/uhaf092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant-metabolite-microbe interactions play essential roles in disease suppression. Most studies focus on the root exudates and rhizosphere microbiota to fight soil-borne pathogens, but it is poorly understood whether the changes in phyllosphere metabolites can actively recruit beneficial microbes to enhance disease resistance. In this study, the differences of phyllosphere microbial communities and key leaf metabolites were systematically explored in resistant and susceptible black currant cultivars related to powdery mildew (PM) by integrating microbiome and metabolomic analyses. The results showed that the diversity and composition of microbiome changed, as highlighted by a reduction in microbial alpha-diversity and beta-diversity of susceptible cultivars. An increasing fungal network complexity and a decreasing bacterial network complexity occurred in resistant cultivar. Bacillus, Burkholderia (bacteria), and Penicillium (fungi) were identified as keystone microorganisms and resistance effectors in resistant cultivar. Metabolites such as salicylic acid, trans-zeatin, and griseofulvin were more abundant in resistant cultivar, which had a positive regulatory effect on the abundance of bacterial and fungal keystones. These findings unravel that resistant cultivar can enrich beneficial microorganisms by adjusting leaf metabolites, thus showing the external disease-resistant response. Moreover, the reduced stomatal number and increased tissue thickness were observed in resistant cultivar, suggesting inherent physical structure also provides a basic defense against PM pathogens. Therefore, resistant black currant cultivar displayed multi-level defense responses of physical structures, metabolites and microorganisms to PM pathogens. Collectively, our study highlights the potential for utilizing phyllosphere microbiome dynamics and metabolomic adjustments in agricultural practices, plant breeding, and microbiome engineering to develop disease-resistant crops.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhaf092\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf092","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

植物-代谢物-微生物相互作用在疾病抑制中起重要作用。大多数研究集中在根分泌物和根际微生物群对抗土传病原体上,但对根际代谢物的变化是否能积极招募有益微生物以增强抗病性的了解甚少。本研究采用微生物组学和代谢组学相结合的方法,系统地探讨了白粉病(PM)抗性和敏感性黑加仑品种的根际微生物群落和关键叶代谢物的差异。结果表明,土壤微生物群落的多样性和组成发生了变化,主要表现为敏感品种的α -多样性和β -多样性的减少。抗性品种的真菌网络复杂性增加,细菌网络复杂性降低。鉴定出芽孢杆菌、伯克霍尔德菌和青霉菌是抗性品种的关键微生物和抗性效应菌。水杨酸、反式玉米素、灰黄霉素等代谢产物在抗性品种中含量较高,对细菌和真菌关键菌的丰度具有正向调节作用。这些发现揭示了抗性品种可以通过调节叶片代谢产物来丰富有益微生物,从而表现出外部抗病反应。此外,抗性品种气孔数量减少,组织厚度增加,表明内在的物理结构也提供了对PM病原体的基本防御。因此,抗性黑加仑品种对PM病原体表现出多层次的物理结构、代谢物和微生物防御反应。总的来说,我们的研究强调了在农业实践、植物育种和微生物组工程中利用层圈微生物组动力学和代谢组学调整来开发抗病作物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolites-mediated responses of phyllosphere microbiota to powdery mildew infection in resistant and susceptible black currant cultivars
Plant-metabolite-microbe interactions play essential roles in disease suppression. Most studies focus on the root exudates and rhizosphere microbiota to fight soil-borne pathogens, but it is poorly understood whether the changes in phyllosphere metabolites can actively recruit beneficial microbes to enhance disease resistance. In this study, the differences of phyllosphere microbial communities and key leaf metabolites were systematically explored in resistant and susceptible black currant cultivars related to powdery mildew (PM) by integrating microbiome and metabolomic analyses. The results showed that the diversity and composition of microbiome changed, as highlighted by a reduction in microbial alpha-diversity and beta-diversity of susceptible cultivars. An increasing fungal network complexity and a decreasing bacterial network complexity occurred in resistant cultivar. Bacillus, Burkholderia (bacteria), and Penicillium (fungi) were identified as keystone microorganisms and resistance effectors in resistant cultivar. Metabolites such as salicylic acid, trans-zeatin, and griseofulvin were more abundant in resistant cultivar, which had a positive regulatory effect on the abundance of bacterial and fungal keystones. These findings unravel that resistant cultivar can enrich beneficial microorganisms by adjusting leaf metabolites, thus showing the external disease-resistant response. Moreover, the reduced stomatal number and increased tissue thickness were observed in resistant cultivar, suggesting inherent physical structure also provides a basic defense against PM pathogens. Therefore, resistant black currant cultivar displayed multi-level defense responses of physical structures, metabolites and microorganisms to PM pathogens. Collectively, our study highlights the potential for utilizing phyllosphere microbiome dynamics and metabolomic adjustments in agricultural practices, plant breeding, and microbiome engineering to develop disease-resistant crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信