CeSbTe中电荷密度波态内部结构的可视化

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xinglu Que, Qingyu He, Lihui Zhou, Shiming Lei, Leslie Schoop, Dennis Huang, Hidenori Takagi
{"title":"CeSbTe中电荷密度波态内部结构的可视化","authors":"Xinglu Que, Qingyu He, Lihui Zhou, Shiming Lei, Leslie Schoop, Dennis Huang, Hidenori Takagi","doi":"10.1038/s41467-025-58417-x","DOIUrl":null,"url":null,"abstract":"<p>The collective reorganization of electrons into a charge density wave has long served as a textbook example of an ordered phase in condensed matter physics. Two-dimensional square lattices with <i>p</i> electrons are well-suited to the realization of charge density waves, due to the anisotropy of the <i>p</i> orbitals and the resulting one dimensionality of the electronic structure. In spite of a long history of study of charge density waves in square-lattice systems, few reports have recognized the significance of a hidden orbital degree of freedom. The degeneracy of <i>p</i><sub><i>x</i></sub> and <i>p</i><sub><i>y</i></sub> electrons may give rise to orbital patterns in real space that endow the charge density wave with additional broken symmetries or unusual order parameters. Here, we use scanning tunneling microscopy to visualize the internal structure of the charge-density-wave state of CeSbTe, which contains Sb square lattices with 5<i>p</i> electrons. We image atomic-sized, anisotropic lobes of charge density with periodically modulating anisotropy, which we interpret in terms of a superposition of <i>p</i><sub><i>x</i></sub> and <i>p</i><sub><i>y</i></sub> bond density waves. Our results support the fact that delocalized <i>p</i> orbitals can reorganize into emergent electronic states of matter.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing the internal structure of the charge-density-wave state in CeSbTe\",\"authors\":\"Xinglu Que, Qingyu He, Lihui Zhou, Shiming Lei, Leslie Schoop, Dennis Huang, Hidenori Takagi\",\"doi\":\"10.1038/s41467-025-58417-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The collective reorganization of electrons into a charge density wave has long served as a textbook example of an ordered phase in condensed matter physics. Two-dimensional square lattices with <i>p</i> electrons are well-suited to the realization of charge density waves, due to the anisotropy of the <i>p</i> orbitals and the resulting one dimensionality of the electronic structure. In spite of a long history of study of charge density waves in square-lattice systems, few reports have recognized the significance of a hidden orbital degree of freedom. The degeneracy of <i>p</i><sub><i>x</i></sub> and <i>p</i><sub><i>y</i></sub> electrons may give rise to orbital patterns in real space that endow the charge density wave with additional broken symmetries or unusual order parameters. Here, we use scanning tunneling microscopy to visualize the internal structure of the charge-density-wave state of CeSbTe, which contains Sb square lattices with 5<i>p</i> electrons. We image atomic-sized, anisotropic lobes of charge density with periodically modulating anisotropy, which we interpret in terms of a superposition of <i>p</i><sub><i>x</i></sub> and <i>p</i><sub><i>y</i></sub> bond density waves. Our results support the fact that delocalized <i>p</i> orbitals can reorganize into emergent electronic states of matter.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58417-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58417-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电子集体重组成电荷密度波长期以来一直是凝聚态物理中有序相的教科书范例。由于p轨道的各向异性和由此产生的电子结构的一维性,带有p电子的二维方形晶格非常适合于电荷密度波的实现。尽管对方晶格系统中电荷密度波的研究已有很长的历史,但很少有报告认识到隐藏轨道自由度的重要性。px和py电子的简并可以在实际空间中产生轨道模式,从而赋予电荷密度波额外的破缺对称性或不寻常的有序参数。在这里,我们使用扫描隧道显微镜来可视化CeSbTe的电荷密度波态的内部结构,它包含Sb方形晶格和5p电子。我们用周期性调制的各向异性成像原子大小的电荷密度各向异性叶,我们用px和py键密度波的叠加来解释。我们的结果支持这样一个事实,即离域p轨道可以重组为物质的紧急电子状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visualizing the internal structure of the charge-density-wave state in CeSbTe

Visualizing the internal structure of the charge-density-wave state in CeSbTe

The collective reorganization of electrons into a charge density wave has long served as a textbook example of an ordered phase in condensed matter physics. Two-dimensional square lattices with p electrons are well-suited to the realization of charge density waves, due to the anisotropy of the p orbitals and the resulting one dimensionality of the electronic structure. In spite of a long history of study of charge density waves in square-lattice systems, few reports have recognized the significance of a hidden orbital degree of freedom. The degeneracy of px and py electrons may give rise to orbital patterns in real space that endow the charge density wave with additional broken symmetries or unusual order parameters. Here, we use scanning tunneling microscopy to visualize the internal structure of the charge-density-wave state of CeSbTe, which contains Sb square lattices with 5p electrons. We image atomic-sized, anisotropic lobes of charge density with periodically modulating anisotropy, which we interpret in terms of a superposition of px and py bond density waves. Our results support the fact that delocalized p orbitals can reorganize into emergent electronic states of matter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信