LGFormer:为脑电图解码整合局部和全局表征

Wenjie Yang, Xingfu Wang, Wenxia Qi, Wei Wang
{"title":"LGFormer:为脑电图解码整合局部和全局表征","authors":"Wenjie Yang, Xingfu Wang, Wenxia Qi, Wei Wang","doi":"10.1088/1741-2552/adc5a3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Electroencephalography (EEG) decoding is challenging because of its temporal variability and low signal-to-noise ratio, which complicate the extraction of meaningful information from signals. Although convolutional neural networks (CNNs) effectively extract local features from EEG signals, they are constrained by restricted receptive fields. In contrast, transformers excel at capturing global dependencies through self-attention mechanisms but often require extensive training data and computational resources, which limits their efficiency on EEG datasets with limited samples.<i>Approach.</i>In this paper, we propose LGFormer, a hybrid network designed to efficiently learn both local and global representations for EEG decoding. LGFormer employs a deep attention module to extract global information from EEG signals, dynamically adjusting the focus of CNNs. Subsequently, LGFormer incorporates a local-enhanced transformer, combining the strengths of CNNs and transformers to achieve multiscale perception from local to global. Despite integrating multiple advanced techniques, LGFormer maintains a lightweight design and training efficiency.<i>Main results.</i>LGFormer achieves state-of-the-art performance within 200 training epochs across four public datasets, including motor imagery, cognitive workload, and error-related negativity decoding tasks. Additionally, we propose a novel spatial and temporal attention visualization method, revealing that LGFormer captures discriminative spatial and temporal features, enhancing model interpretability and providing insights into its decision-making process.<i>Significance.</i>In summary, LGFormer demonstrates superior performance while maintaining high training efficiency across different tasks, highlighting its potential as a versatile and practical model for EEG decoding.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGFormer: integrating local and global representations for EEG decoding.\",\"authors\":\"Wenjie Yang, Xingfu Wang, Wenxia Qi, Wei Wang\",\"doi\":\"10.1088/1741-2552/adc5a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Electroencephalography (EEG) decoding is challenging because of its temporal variability and low signal-to-noise ratio, which complicate the extraction of meaningful information from signals. Although convolutional neural networks (CNNs) effectively extract local features from EEG signals, they are constrained by restricted receptive fields. In contrast, transformers excel at capturing global dependencies through self-attention mechanisms but often require extensive training data and computational resources, which limits their efficiency on EEG datasets with limited samples.<i>Approach.</i>In this paper, we propose LGFormer, a hybrid network designed to efficiently learn both local and global representations for EEG decoding. LGFormer employs a deep attention module to extract global information from EEG signals, dynamically adjusting the focus of CNNs. Subsequently, LGFormer incorporates a local-enhanced transformer, combining the strengths of CNNs and transformers to achieve multiscale perception from local to global. Despite integrating multiple advanced techniques, LGFormer maintains a lightweight design and training efficiency.<i>Main results.</i>LGFormer achieves state-of-the-art performance within 200 training epochs across four public datasets, including motor imagery, cognitive workload, and error-related negativity decoding tasks. Additionally, we propose a novel spatial and temporal attention visualization method, revealing that LGFormer captures discriminative spatial and temporal features, enhancing model interpretability and providing insights into its decision-making process.<i>Significance.</i>In summary, LGFormer demonstrates superior performance while maintaining high training efficiency across different tasks, highlighting its potential as a versatile and practical model for EEG decoding.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adc5a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc5a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
LGFormer: integrating local and global representations for EEG decoding.

Objective.Electroencephalography (EEG) decoding is challenging because of its temporal variability and low signal-to-noise ratio, which complicate the extraction of meaningful information from signals. Although convolutional neural networks (CNNs) effectively extract local features from EEG signals, they are constrained by restricted receptive fields. In contrast, transformers excel at capturing global dependencies through self-attention mechanisms but often require extensive training data and computational resources, which limits their efficiency on EEG datasets with limited samples.Approach.In this paper, we propose LGFormer, a hybrid network designed to efficiently learn both local and global representations for EEG decoding. LGFormer employs a deep attention module to extract global information from EEG signals, dynamically adjusting the focus of CNNs. Subsequently, LGFormer incorporates a local-enhanced transformer, combining the strengths of CNNs and transformers to achieve multiscale perception from local to global. Despite integrating multiple advanced techniques, LGFormer maintains a lightweight design and training efficiency.Main results.LGFormer achieves state-of-the-art performance within 200 training epochs across four public datasets, including motor imagery, cognitive workload, and error-related negativity decoding tasks. Additionally, we propose a novel spatial and temporal attention visualization method, revealing that LGFormer captures discriminative spatial and temporal features, enhancing model interpretability and providing insights into its decision-making process.Significance.In summary, LGFormer demonstrates superior performance while maintaining high training efficiency across different tasks, highlighting its potential as a versatile and practical model for EEG decoding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信