{"title":"Deep learning-based automated detection and diagnosis of gouty arthritis in ultrasound images of the first metatarsophalangeal joint.","authors":"Lishan Xiao, Yizhe Zhao, Yuchen Li, Mengmeng Yan, Manhua Liu, Chunping Ning","doi":"10.11152/mu-4495","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop a deep learning (DL) model for automatic detection and diagnosis of gouty arthritis (GA) in the first metatarsophalangeal joint (MTPJ) using ultrasound (US) images.</p><p><strong>Materials and methods: </strong>A retrospective study included individuals who underwent first MTPJ ultrasonography between February and July 2023. A five-fold cross-validation method (training set = 4:1) was employed. A deep residual convolutional neural network (CNN) was trained, and Gradient-weighted Class Activation Mapping (Grad-CAM) was used for visualization. Different ResNet18 models with varying residual blocks (2, 3, 4, 6) were compared to select the optimal model for image classification. Diagnostic decisions were based on a threshold proportion of abnormal images, determined from the training set.</p><p><strong>Results: </strong>A total of 2401 US images from 260 patients (149 gout, 111 control) were analyzed. The model with 3 residual blocks performed best, achieving an AUC of 0.904 (95% CI: 0.887~0.927). Visualization results aligned with radiologist opinions in 2000 images. The diagnostic model attained an accuracy of 91.1% (95% CI: 90.4%~91.8%) on the testing set, with a diagnostic threshold of 0.328.</p><p><strong>Conclusion: </strong> The DL model demonstrated excellent performance in automatically detecting and diagnosing GA in the first MTPJ.</p>","PeriodicalId":94138,"journal":{"name":"Medical ultrasonography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11152/mu-4495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning-based automated detection and diagnosis of gouty arthritis in ultrasound images of the first metatarsophalangeal joint.
Aim: This study aimed to develop a deep learning (DL) model for automatic detection and diagnosis of gouty arthritis (GA) in the first metatarsophalangeal joint (MTPJ) using ultrasound (US) images.
Materials and methods: A retrospective study included individuals who underwent first MTPJ ultrasonography between February and July 2023. A five-fold cross-validation method (training set = 4:1) was employed. A deep residual convolutional neural network (CNN) was trained, and Gradient-weighted Class Activation Mapping (Grad-CAM) was used for visualization. Different ResNet18 models with varying residual blocks (2, 3, 4, 6) were compared to select the optimal model for image classification. Diagnostic decisions were based on a threshold proportion of abnormal images, determined from the training set.
Results: A total of 2401 US images from 260 patients (149 gout, 111 control) were analyzed. The model with 3 residual blocks performed best, achieving an AUC of 0.904 (95% CI: 0.887~0.927). Visualization results aligned with radiologist opinions in 2000 images. The diagnostic model attained an accuracy of 91.1% (95% CI: 90.4%~91.8%) on the testing set, with a diagnostic threshold of 0.328.
Conclusion: The DL model demonstrated excellent performance in automatically detecting and diagnosing GA in the first MTPJ.