Lishan Xiao, Yizhe Zhao, Yuchen Li, Mengmeng Yan, Manhua Liu, Chunping Ning
{"title":"Deep learning-based automated detection and diagnosis of gouty arthritis in ultrasound images of the first metatarsophalangeal joint.","authors":"Lishan Xiao, Yizhe Zhao, Yuchen Li, Mengmeng Yan, Manhua Liu, Chunping Ning","doi":"10.11152/mu-4495","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to develop a deep learning (DL) model for automatic detection and diagnosis of gouty arthritis (GA) in the first metatarsophalangeal joint (MTPJ) using ultrasound (US) images.</p><p><strong>Materials and methods: </strong>A retrospective study included individuals who underwent first MTPJ ultrasonography between February and July 2023. A five-fold cross-validation method (training set = 4:1) was employed. A deep residual convolutional neural network (CNN) was trained, and Gradient-weighted Class Activation Mapping (Grad-CAM) was used for visualization. Different ResNet18 models with varying residual blocks (2, 3, 4, 6) were compared to select the optimal model for image classification. Diagnostic decisions were based on a threshold proportion of abnormal images, determined from the training set.</p><p><strong>Results: </strong>A total of 2401 US images from 260 patients (149 gout, 111 control) were analyzed. The model with 3 residual blocks performed best, achieving an AUC of 0.904 (95% CI: 0.887~0.927). Visualization results aligned with radiologist opinions in 2000 images. The diagnostic model attained an accuracy of 91.1% (95% CI: 90.4%~91.8%) on the testing set, with a diagnostic threshold of 0.328.</p><p><strong>Conclusion: </strong> The DL model demonstrated excellent performance in automatically detecting and diagnosing GA in the first MTPJ.</p>","PeriodicalId":94138,"journal":{"name":"Medical ultrasonography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11152/mu-4495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种深度学习(DL)模型,用于使用超声(US)图像自动检测和诊断第一跖趾关节(MTPJ)痛风性关节炎(GA):一项回顾性研究纳入了2023年2月至7月间接受首次MTPJ超声波检查的患者。采用了五倍交叉验证法(训练集=4:1)。训练了一个深度残差卷积神经网络(CNN),并使用梯度加权类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)进行可视化。对具有不同残差块(2、3、4、6)的不同 ResNet18 模型进行了比较,以选择图像分类的最佳模型。诊断决定基于从训练集中确定的异常图像阈值比例:共分析了 260 名患者(149 名痛风患者,111 名对照组患者)的 2401 张 US 图像。带有 3 个残留区块的模型表现最佳,AUC 为 0.904(95% CI:0.887~0.927)。在 2000 张图像中,可视化结果与放射科医生的意见一致。诊断模型在测试集中的准确率达到 91.1%(95% CI:90.4%~91.8%),诊断阈值为 0.328: DL模型在自动检测和诊断第一MTPJ的GA方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based automated detection and diagnosis of gouty arthritis in ultrasound images of the first metatarsophalangeal joint.

Aim: This study aimed to develop a deep learning (DL) model for automatic detection and diagnosis of gouty arthritis (GA) in the first metatarsophalangeal joint (MTPJ) using ultrasound (US) images.

Materials and methods: A retrospective study included individuals who underwent first MTPJ ultrasonography between February and July 2023. A five-fold cross-validation method (training set = 4:1) was employed. A deep residual convolutional neural network (CNN) was trained, and Gradient-weighted Class Activation Mapping (Grad-CAM) was used for visualization. Different ResNet18 models with varying residual blocks (2, 3, 4, 6) were compared to select the optimal model for image classification. Diagnostic decisions were based on a threshold proportion of abnormal images, determined from the training set.

Results: A total of 2401 US images from 260 patients (149 gout, 111 control) were analyzed. The model with 3 residual blocks performed best, achieving an AUC of 0.904 (95% CI: 0.887~0.927). Visualization results aligned with radiologist opinions in 2000 images. The diagnostic model attained an accuracy of 91.1% (95% CI: 90.4%~91.8%) on the testing set, with a diagnostic threshold of 0.328.

Conclusion:  The DL model demonstrated excellent performance in automatically detecting and diagnosing GA in the first MTPJ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信