使用emews进行分布式模型探索。

Nicholson Collier, Justin M Wozniak, Arindam Fadikar, Abby Stevens, Jonathan Ozik
{"title":"使用emews进行分布式模型探索。","authors":"Nicholson Collier, Justin M Wozniak, Arindam Fadikar, Abby Stevens, Jonathan Ozik","doi":"10.1109/wsc63780.2024.10838848","DOIUrl":null,"url":null,"abstract":"<p><p>As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture (EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote compute resources. The example, including an R version, and additional details on EMEWS are made available on a public website.</p>","PeriodicalId":74535,"journal":{"name":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","volume":"2024 ","pages":"72-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939112/pdf/","citationCount":"0","resultStr":"{\"title\":\"DISTRIBUTED MODEL EXPLORATION WITH EMEWS.\",\"authors\":\"Nicholson Collier, Justin M Wozniak, Arindam Fadikar, Abby Stevens, Jonathan Ozik\",\"doi\":\"10.1109/wsc63780.2024.10838848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture (EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote compute resources. The example, including an R version, and additional details on EMEWS are made available on a public website.</p>\",\"PeriodicalId\":74535,\"journal\":{\"name\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"volume\":\"2024 \",\"pages\":\"72-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wsc63780.2024.10838848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Winter Simulation Conference. Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wsc63780.2024.10838848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着高性能计算资源变得越来越可用,应用和实验模拟和其他计算工具的新模式已经成为可能。本教程介绍了使用Swift (EMEWS)框架进行极端尺度模型探索的最新进展。EMEWS是一种高性能计算(HPC)模型探索(ME)框架,用于计算模型的大规模分析(例如校准、优化)。我们重点关注三个新的基于使用的EMEWS功能,通过二进制安装改进的可访问性,一个新的解耦架构(EMEWS DB)和用于在异构计算资源上分发工作流的任务API,以及改进的EMEWS项目创建功能。我们提供了一个完整的工作示例,其中使用EMEWS DB将Python贝叶斯优化算法连接到运行在本地和远程计算资源上的工作池。该示例(包括R版本)以及关于EMEWS的其他详细信息可在一个公共网站上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DISTRIBUTED MODEL EXPLORATION WITH EMEWS.

As high-performance computing resources have become increasingly available, new modes of applying and experimenting with simulation and other computational tools have become possible. This tutorial presents recent advancements to the Extreme-scale Model Exploration with Swift (EMEWS) framework. EMEWS is a high-performance computing (HPC) model exploration (ME) framework, developed for large-scale analyses (e.g., calibration, optimization) of computational models. We focus on three new use-inspired EMEWS capabilities, improved accessibility through binary installation, a new decoupled architecture (EMEWS DB) and task API for distributing workflows on heterogeneous compute resources, and improved EMEWS project creation capabilities. We present a complete worked example where EMEWS DB is used to connect a Python Bayesian optimization algorithm to worker pools running both locally and on remote compute resources. The example, including an R version, and additional details on EMEWS are made available on a public website.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信